QSAR models based on quantum topological molecular similarity.

A new method called quantum topological molecular similarity (QTMS) was fairly recently proposed [J. Chem. Inf. Comp. Sc., 41, 2001, 764] to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs. QTMS method uses quantum chemical topology (QCT) to define electronic descriptors drawn from modern ab initio wave functions of geometry-optimised molecules. It was shown that the current abundance of computing power can be utilised to inject realistic descriptors into QSAR/QSPRs. In this article we study seven datasets of medicinal interest : the dissociation constants (pK(a)) for a set of substituted imidazolines , the pK(a) of imidazoles , the ability of a set of indole derivatives to displace [(3)H] flunitrazepam from binding to bovine cortical membranes , the influenza inhibition constants for a set of benzimidazoles , the interaction constants for a set of amides and the enzyme liver alcohol dehydrogenase , the natriuretic activity of sulphonamide carbonic anhydrase inhibitors and the toxicity of a series of benzyl alcohols. A partial least square analysis in conjunction with a genetic algorithm delivered excellent models. They are also able to highlight the active site, of the ligand or the molecule whose structure determines the activity. The advantages and limitations of QTMS are discussed.

[1]  Michel Waroquier,et al.  The Electronegativity Equalization Method I: Parametrization and Validation for Atomic Charge Calculations , 2002 .

[2]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[3]  R. Bader,et al.  A topological theory of molecular structure , 1981 .

[4]  U Norinder,et al.  Experimental and computational screening models for the prediction of intestinal drug absorption. , 2001, Journal of medicinal chemistry.

[5]  L. Hall,et al.  Molecular Structure Description: The Electrotopological State , 1999 .

[6]  Lemont B. Kier,et al.  The electrotopological state: structure information at the atomic level for molecular graphs , 1991, J. Chem. Inf. Comput. Sci..

[7]  Emili Besalú,et al.  Identification of Active Molecular Sites Using Quantum-Self-Similarity Measures , 2001, J. Chem. Inf. Comput. Sci..

[8]  Kaushal Rege,et al.  A priori prediction of adsorption isotherm parameters and chromatographic behavior in ion-exchange systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  I. Csizmadia,et al.  Conformational analysis of substituted (E)-4-phenylbut-3-en-2-ones , 2003 .

[10]  Nathaniel O. J. Malcolm,et al.  An improved algorithm to locate critical points in a 3D scalar field as implemented in the program MORPHY , 2003, J. Comput. Chem..

[11]  Emili Besalú,et al.  Molecular quantum similarity and the fundamentals of QSAR. , 2002, Accounts of chemical research.

[12]  Olivier Lamarche,et al.  Description of covalent bond orders using the charge density topology , 2003 .

[13]  D. Winkler,et al.  Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method. , 2004, Journal of medicinal chemistry.

[14]  Bjørn K. Alsberg,et al.  A new 3D molecular structure representation using quantum topology with application to structure–property relationships , 2000 .

[15]  R Carbó-Dorca,et al.  Simple linear QSAR models based on quantum similarity measures. , 1999, Journal of medicinal chemistry.

[16]  D. L. Cooper,et al.  Structure—property relationships and momentum space quantities: Hammett σ—constants , 2003 .

[17]  Curt M. Breneman,et al.  Electron Density Modeling of Large Systems Using the Transferable Atom Equivalent Method , 1995, Comput. Chem..

[18]  Báder Principle of stationary action and the definition of a proper open system. , 1994, Physical review. B, Condensed matter.

[19]  Timmermans Pb,et al.  Dissociation constants of clonidine and structurally related imidazolidines. , 1978 .

[20]  G. Aromí,et al.  Synthesis of 3d metallic single-molecule magnets , 2006 .

[21]  Ramon Carbó-Dorca,et al.  Molecular Basis of LFER. Modeling of the Electronic Substituent Effect Using Fragment Quantum Self-Similarity Measures , 2003, J. Chem. Inf. Comput. Sci..

[22]  David Robert,et al.  Use of electron-electron repulsion energy as a molecular descriptor in QSAR and QSPR studies , 2000, J. Comput. Aided Mol. Des..

[23]  Paul L. A. Popelier,et al.  Atoms in Molecules: An Introduction , 2000 .

[24]  R. Bader,et al.  Description of conjugation and hyperconjugation in terms of electron distributions , 1983 .

[25]  R. Carbó-Dorca,et al.  Extended density functions , 2000 .

[26]  R. Bader From Schrodinger to atoms in molecules , 1988 .

[27]  P. Popelier,et al.  Atomic properties of amino acids: computed atom types as a guide for future force-field design. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  M. Karelson Molecular descriptors in QSAR/QSPR , 2000 .

[29]  C. Hansch,et al.  Alcohol dehydrogenase structure-activity relationships. , 1972, The Journal of biological chemistry.

[30]  Paul L. A. Popelier,et al.  Quantum molecular similarity. 1. BCP space , 1999 .

[31]  Peter Ertl,et al.  Simple Quantum Chemical Parameters as an Alternative to the Hammett Sigma Constants in QSAR Studies , 1997 .

[32]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[33]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[34]  R. Bader,et al.  The mechanics of hydrogen bond formation in conjugated systems , 1988 .

[35]  K. Tuppurainen,et al.  On the mutagenicity of MX compounds. , 1993, Mutation research.

[36]  Paul L. A. Popelier,et al.  A ROBUST ALGORITHM TO LOCATE AUTOMATICALLY ALL TYPES OF CRITICAL-POINTS IN THE CHARGE-DENSITY AND ITS LAPLACIAN , 1994 .

[37]  Paul J. Smith,et al.  Quantitative structure–activity relationships from optimised ab initio bond lengths: steroid binding affinity and antibacterial activity of nitrofuran derivatives , 2004, J. Comput. Aided Mol. Des..

[38]  P. Popelier,et al.  Estimation of pKa using quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. , 2004, The Journal of organic chemistry.

[39]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[40]  Bjørn K. Alsberg,et al.  Modeling quantitative structure-property relationships in calculated reaction pathways using a new 3D quantum topological representation , 2001 .

[41]  Paul L. A. Popelier,et al.  QUANTUM MOLECULAR SIMILARITY: USE OF ATOMS IN MOLECULES DERIVED QUANTITIES AS QSAR VARIABLES , 2000 .

[42]  Lemont B. Kier,et al.  Electrotopological State Indices for Atom Types: A Novel Combination of Electronic, Topological, and Valence State Information , 1995, J. Chem. Inf. Comput. Sci..

[43]  K. Folkers,et al.  INHIBITION OF INFLUENZA VIRUS MULTIPLICATION BY ALKYL DERIVATIVES OF BENZIMIDAZOLE , 1953, The Journal of experimental medicine.

[44]  Richard F. W. Bader A quantum theory of molecular structure and its applications , 1991 .

[45]  Paul L. A. Popelier,et al.  Atoms in molecules , 2000 .

[46]  J. Mestres,et al.  Foundations and recent developments on molecular quantum similarity , 1995 .

[47]  Paul L. A. Popelier,et al.  Quantum topological molecular similarity. Part 5. Further development with an application to the toxicity of polychlorinated dibenzo-p-dioxinsThe IUPAC name for dibenzo-p-dioxin is dibenzo[b,e][1,4]dioxin.(PCDDs) , 2002 .

[48]  M. Karelson,et al.  Quantum-Chemical Descriptors in QSAR/QSPR Studies. , 1996, Chemical reviews.

[49]  I. Forbes,et al.  CCR2: characterization of the antagonist binding site from a combined receptor modeling/mutagenesis approach. , 2003, Journal of medicinal chemistry.

[50]  C. Wermuth,et al.  Clonidine and related analogues. Quantitative correlations. , 1976, Journal of medicinal chemistry.

[51]  R. Bader,et al.  The kinetic energy of molecular charge distributions and molecular stability , 1969 .

[52]  A. Hinchliffe,et al.  Chemical Modelling: Applications and Theory , 2008 .

[53]  Paul L. A. Popelier,et al.  Ester hydrolysis rate constant prediction from quantum topological molecular similarity descriptors , 2003 .

[54]  C. Hansch,et al.  QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS OF THE BENZODIAZEPINES. A REVIEW AND REEVALUATION , 1994 .

[55]  Paul J. Smith,et al.  Quantitative structure-activity relationships of mutagenic activity from quantum topological descriptors: triazenes and halogenated hydroxyfuranones (mutagen-X) derivatives , 2004, J. Comput. Aided Mol. Des..

[56]  C. Breneman,et al.  QSPR analysis of HPLC column capacity factors for a set of high‐energy materials using electronic van der waals surface property descriptors computed by transferable atom equivalent method , 1997 .

[57]  E. Argese,et al.  Quantitative structure-activity relationships for the toxicity of chlorophenols to mammalian submitochondrial particles. , 1999, Chemosphere.

[58]  Roberto Todeschini,et al.  Submitochondrial particles as toxicity biosensors of chlorophenols , 1995 .

[59]  Richards Wg,et al.  QSAR's from similarity matrices. Technique validation and application in the comparison of different similarity evaluation methods. , 1993 .

[60]  B D Silverman,et al.  Comparative molecular moment analysis (CoMMA): 3D-QSAR without molecular superposition. , 1996, Journal of medicinal chemistry.

[61]  Paul L. A. Popelier,et al.  Quantum topological molecular similarity. Part 4. A QSAR study of cell growth inhibitory properties of substituted (E)-1-phenylbut-1-en-3-ones , 2002 .

[62]  P. Wolschann,et al.  Prediction of the aroma quality and the threshold values of some pyrazines using artificial neural networks. , 2001, Journal of medicinal chemistry.

[63]  Paul G. Mezey,et al.  The holographic electron density theorem and quantum similarity measures , 1999 .

[64]  J. Murray,et al.  Comparison of quantum chemical parameters and Hammett constants in correlating pK(a) values of substituted anilines. , 2001, The Journal of organic chemistry.

[65]  Y. Martin,et al.  Direct prediction of dissociation constants (pKa's) of clonidine-like imidazolines, 2-substituted imidazoles, and 1-methyl-2-substituted-imidazoles from 3D structures using a comparative molecular field analysis (CoMFA) approach. , 1991, Journal of medicinal chemistry.

[66]  E. Novellino,et al.  Synthesis, structure-activity relationships, and molecular modeling studies of N-(indol-3-ylglyoxylyl)benzylamine derivatives acting at the benzodiazepine receptor. , 1996, Journal of medicinal chemistry.

[67]  G. Pei,et al.  3D-QSAR model of flavonoids binding at benzodiazepine site in GABAA receptors. , 2001, Journal of medicinal chemistry.

[68]  Jinbo Bi,et al.  Prediction of Protein Retention Times in Anion-Exchange Chromatography Systems Using Support Vector Regression , 2002, J. Chem. Inf. Comput. Sci..

[69]  Yuji Takahata,et al.  Comparison between Neural Networks (NN) and Principal Component Analysis (PCA): Structure Activity Relationships of 1, 4-Dihydropyridine Calcium Channel Antagonists (Nifedipine Analogues) , 2003, J. Chem. Inf. Comput. Sci..

[70]  Paul L. A. Popelier,et al.  Quantum Molecular Similarity. 3. QTMS Descriptors , 2001, J. Chem. Inf. Comput. Sci..

[71]  K. Koehler,et al.  Development of a comprehensive pharmacophore model for the benzodiazepine receptor. , 1995, Drug design and discovery.