RND multidrug efflux pumps: what are they good for?

Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis.

[1]  P. Savage,et al.  Role of the HefC Efflux Pump in Helicobacter pylori Cholesterol-Dependent Resistance to Ceragenins and Bile Salts , 2010, Infection and Immunity.

[2]  C. Rensing,et al.  Genes Involved in Copper Homeostasis inEscherichia coli , 2001, Journal of bacteriology.

[3]  J. Bina,et al.  Vibrio cholerae vexH Encodes a Multiple Drug Efflux Pump That Contributes to the Production of Cholera Toxin and the Toxin Co-Regulated Pilus , 2012, PloS one.

[4]  J. Aínsa,et al.  Role of mycobacterial efflux transporters in drug resistance: an unresolved question. , 2006, FEMS microbiology reviews.

[5]  Robert G. Martin,et al.  Activation of the Escherichia coli marA/soxS/rob regulon in response to transcriptional activator concentration. , 2008, Journal of molecular biology.

[6]  W. Bishai,et al.  Designer Arrays for Defined Mutant Analysis To Detect Genes Essential for Survival of Mycobacterium tuberculosis in Mouse Lungs , 2005, Infection and Immunity.

[7]  B. Iglewski,et al.  The Pseudomonas Quinolone Signal Regulates rhl Quorum Sensing in Pseudomonas aeruginosa , 2000, Journal of bacteriology.

[8]  J. Martínez,et al.  Structural and Functional Analysis of SmeT, the Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF* , 2009, Journal of Biological Chemistry.

[9]  Douglas M. Warner,et al.  Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. , 2007, The Journal of infectious diseases.

[10]  J. Bina,et al.  Helicobacter pylori Uptake and Efflux: Basis for Intrinsic Susceptibility to Antibiotics In Vitro , 2000, Antimicrobial Agents and Chemotherapy.

[11]  J. Linares,et al.  Towards an ecological approach to antibiotics and antibiotic resistance genes. , 2009, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[12]  P. Hedley,et al.  Efflux pump gene expression in Erwinia chrysanthemi is induced by exposure to phenolic acids. , 2007, Molecular plant-microbe interactions : MPMI.

[13]  B. Iglewski,et al.  Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.

[14]  J. Spencer,et al.  Chemotactic response of Helicobacter pylori to human plasma and bile. , 2004, Journal of medical microbiology.

[15]  W. Shafer,et al.  Overexpression of the MtrC-MtrD-MtrE Efflux Pump Due to an mtrR Mutation Is Required for Chromosomally Mediated Penicillin Resistance in Neisseria gonorrhoeae , 2002, Journal of bacteriology.

[16]  J. Bijlsma,et al.  Identification of loci essential for the growth of Helicobacter pylori under acidic conditions. , 2000, The Journal of infectious diseases.

[17]  Diarmaid Hughes,et al.  Antibiotic resistance and its cost: is it possible to reverse resistance? , 2010, Nature Reviews Microbiology.

[18]  W. Shafer,et al.  Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Fernando Baquero,et al.  Interactions among Strategies Associated with Bacterial Infection: Pathogenicity, Epidemicity, and Antibiotic Resistance , 2002, Clinical Microbiology Reviews.

[20]  W. Shafer,et al.  The farAB‐encoded efflux pump mediates resistance of gonococci to long‐chained antibacterial fatty acids , 1999, Molecular microbiology.

[21]  Chuan He,et al.  Expression of Multidrug Resistance Efflux Pump Gene norA Is Iron Responsive in Staphylococcus aureus , 2012, Journal of bacteriology.

[22]  C. Hsieh,et al.  The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. , 2011, Molecular pharmaceutics.

[23]  Satoshi Murakami,et al.  Crystal structure of bacterial multidrug efflux transporter AcrB , 2002, Nature.

[24]  J. Martínez Antibiotics and Antibiotic Resistance Genes in Natural Environments , 2008, Science.

[25]  K. Perron,et al.  A Copper-Activated Two-Component System Interacts with Zinc and Imipenem Resistance in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[26]  J. Pagés,et al.  Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. , 2008, Current drug targets.

[27]  F. Baquero,et al.  Ecology and evolution of antibiotic resistance. , 2009, Environmental microbiology reports.

[28]  B. D. de Jonge,et al.  Compound Efflux in Helicobacter pylori , 2005, Antimicrobial Agents and Chemotherapy.

[29]  Jun Lin,et al.  Bile Salts Modulate Expression of the CmeABC Multidrug Efflux Pump in Campylobacter jejuni , 2005, Journal of bacteriology.

[30]  A. Neyfakh Natural functions of bacterial multidrug transporters. , 1997, Trends in microbiology.

[31]  I. Lasa,et al.  Effect of Transcriptional Activators SoxS, RobA, and RamA on Expression of Multidrug Efflux Pump AcrAB-TolC in Enterobacter cloacae , 2012, Antimicrobial Agents and Chemotherapy.

[32]  M H Saier,et al.  Phylogeny of multidrug transporters. , 2001, Seminars in cell & developmental biology.

[33]  K. Poole Efflux-mediated antimicrobial resistance. , 2005, The Journal of antimicrobial chemotherapy.

[34]  Vinod Nair,et al.  SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis , 2012, Antimicrobial Agents and Chemotherapy.

[35]  S. Bereswill,et al.  The Helicobacter pylori CrdRS Two-Component Regulation System (HP1364/HP1365) Is Required for Copper-Mediated Induction of the Copper Resistance Determinant CrdA , 2005, Journal of bacteriology.

[36]  H. Nikaido Multidrug resistance in bacteria. , 2009, Annual review of biochemistry.

[37]  E. Martínez-Romero,et al.  Multiresistance genes of Rhizobium etli CFN42. , 2000, Molecular plant-microbe interactions : MPMI.

[38]  S. Pukatzki,et al.  Antibiotic resistance mechanisms of Vibrio cholerae. , 2011, Journal of medical microbiology.

[39]  Fergal O'Gara,et al.  MexT Functions as a Redox-Responsive Regulator Modulating Disulfide Stress Resistance in Pseudomonas aeruginosa , 2012, Journal of bacteriology.

[40]  R. Skurray,et al.  Regulation of Bacterial Drug Export Systems , 2002, Microbiology and Molecular Biology Reviews.

[41]  C. van Delden,et al.  Overexpression of the MexEF-OprN Multidrug Efflux System Affects Cell-to-Cell Signaling in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[42]  J. Ramos,et al.  Antibiotic-Dependent Induction of Pseudomonas putida DOT-T1E TtgABC Efflux Pump Is Mediated by the Drug Binding Repressor TtgR , 2003, Antimicrobial Agents and Chemotherapy.

[43]  Francisco,et al.  Effect of the transcriptional activators SoxS , RobA and RamA 1 on expression of the multidrug efflux pump AcrAB-TolC in 2 Enterobacter cloacae , 2012 .

[44]  M. Ullrich,et al.  The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. , 2004, Molecular plant-microbe interactions : MPMI.

[45]  P. Cosson,et al.  Pseudomonas aeruginosa Virulence Analyzed in a Dictyostelium discoideum Host System , 2002, Journal of bacteriology.

[46]  O. Sahin,et al.  CmeR Functions as a Transcriptional Repressor for the Multidrug Efflux Pump CmeABC in Campylobacter jejuni , 2005, Antimicrobial Agents and Chemotherapy.

[47]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[48]  Hiroshi Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2012, Drugs.

[49]  A. Romero,et al.  The Binding of Triclosan to SmeT, the Repressor of the Multidrug Efflux Pump SmeDEF, Induces Antibiotic Resistance in Stenotrophomonas maltophilia , 2011, PLoS pathogens.

[50]  J. Fralick,et al.  Erwinia chrysanthemi tolC Is Involved in Resistance to Antimicrobial Plant Chemicals and Is Essential for Phytopathogenesis† , 2003, Journal of bacteriology.

[51]  F. Baquero,et al.  Fitness of in vitro selected Pseudomonas aeruginosa nalB and nfxB multidrug resistant mutants. , 2002, The Journal of antimicrobial chemotherapy.

[52]  L. Piddock,et al.  The importance of efflux pumps in bacterial antibiotic resistance. , 2003, The Journal of antimicrobial chemotherapy.

[53]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[54]  F. Baquero,et al.  Differential interactions within the Caenorhabditis elegans-Pseudomonas aeruginosa pathogenesis model. , 2003, Journal of theoretical biology.

[55]  Robert G. Martin,et al.  Transcriptional activation by MarA, SoxS and Rob of two tolC promoters using one binding site: a complex promoter configuration for tolC in Escherichia coli , 2008, Molecular microbiology.

[56]  Q. C. Truong-Bolduc,et al.  MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus , 2005, Journal of bacteriology.

[57]  K. Klose,et al.  Vibrio cholerae and cholera: out of the water and into the host. , 2002, FEMS microbiology reviews.

[58]  F. Rojo,et al.  Environmental and clinical isolates of Pseudomonas aeruginosa show pathogenic and biodegradative properties irrespective of their origin. , 1999, Environmental microbiology.

[59]  Alain Liard,et al.  Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA , 2005, Antimicrobial Agents and Chemotherapy.

[60]  O. Neyrolles,et al.  Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. , 2011, Tuberculosis.

[61]  P. Silley Regulation of bacteria , 2007 .

[62]  I. Paulsen,et al.  Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[63]  Carolyn R Bertozzi,et al.  MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Martínez,et al.  Cloning and Characterization of SmeT, a Repressor of the Stenotrophomonas maltophilia Multidrug Efflux Pump SmeDEF , 2002, Antimicrobial Agents and Chemotherapy.

[65]  G. Riccardi,et al.  mmpL7 Gene of Mycobacterium tuberculosis Is Responsible for Isoniazid Efflux in Mycobacterium smegmatis , 2005, Antimicrobial Agents and Chemotherapy.

[66]  J. Ramos,et al.  Genetic Analysis of Functions Involved in Adhesion of Pseudomonas putida to Seeds , 2000, Journal of bacteriology.

[67]  Murray Grant,et al.  Salicylic acid in plant defence--the players and protagonists. , 2007, Current opinion in plant biology.

[68]  S. Bereswill,et al.  The Novel Helicobacter pylori CznABC Metal Efflux Pump Is Required for Cadmium, Zinc, and Nickel Resistance,Urease Modulation, and Gastric Colonization , 2006, Infection and Immunity.

[69]  G. Sachs,et al.  Influence of pH on metabolism and urease activity of Helicobacter pylori. , 1998, Gastroenterology.

[70]  Angelina Iniguez,et al.  Discovery and characterization of a unique mycobacterial heme acquisition system , 2011, Proceedings of the National Academy of Sciences.

[71]  J. Cox,et al.  Interaction between Polyketide Synthase and Transporter Suggests Coupled Synthesis and Export of Virulence Lipid in M. tuberculosis , 2005, PLoS pathogens.

[72]  F. Rojo,et al.  Overexpression of the Multidrug Efflux Pumps MexCD-OprJ and MexEF-OprN Is Associated with a Reduction of Type III Secretion in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[73]  G. Ruiz-Palacios The health burden of Campylobacter infection and the impact of antimicrobial resistance: playing chicken. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[74]  J. Martínez,et al.  Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology. , 2004, The Journal of antimicrobial chemotherapy.

[75]  Ana Segura,et al.  Mechanisms of solvent tolerance in gram-negative bacteria. , 2002, Annual review of microbiology.

[76]  P. Silverman,et al.  An Active Type IV Secretion System Encoded by the F Plasmid Sensitizes Escherichia coli to Bile Salts , 2004, Journal of bacteriology.

[77]  M. Ullrich,et al.  NorM, an Erwinia amylovora Multidrug Efflux Pump Involved in In Vitro Competition with Other Epiphytic Bacteria , 2004, Applied and Environmental Microbiology.

[78]  T. Tsuchiya,et al.  Functional Cloning and Characterization of a Multidrug Efflux Pump, MexHI-OpmD, from a Pseudomonas aeruginosa Mutant , 2003, Antimicrobial Agents and Chemotherapy.

[79]  B. J. Davies,et al.  Nickel-Responsive Induction of Urease Expression inHelicobacter pylori Is Mediated at the Transcriptional Level , 2001, Infection and Immunity.

[80]  A. Cheung,et al.  MgrA Represses Biofilm Formation in Staphylococcus aureus , 2008, Infection and Immunity.

[81]  Zhiqiang Liu,et al.  Efflux pump gene hefA of Helicobacter pylori plays an important role in multidrug resistance. , 2008, World journal of gastroenterology.

[82]  G. Grass,et al.  The product of the ybdE gene of the Escherichia coli chromosome is involved in detoxification of silver ions. , 2001, Microbiology.

[83]  J. Martínez,et al.  Quinolone Resistance: Much More than Predicted , 2011, Front. Microbio..

[84]  F. Rojo,et al.  The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. , 2010, Environmental microbiology.

[85]  J. Ramos,et al.  Crystal Structures of Multidrug Binding Protein TtgR in Complex with Antibiotics and Plant Antimicrobials , 2007, Journal of molecular biology.

[86]  C. Kado,et al.  An Isoflavonoid-Inducible Efflux Pump in Agrobacterium tumefaciens Is Involved in Competitive Colonization of Roots , 1998, Journal of bacteriology.

[87]  K. Poole Efflux pumps as antimicrobial resistance mechanisms , 2007, Annals of medicine.

[88]  William R. Jacobs,et al.  Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice , 1999, Nature.

[89]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[90]  Satoshi Murakami,et al.  Crystal structures of a multidrug transporter reveal a functionally rotating mechanism , 2006, Nature.

[91]  Lori A. S. Snyder,et al.  A Gonococcal Efflux Pump System Enhances Bacterial Survival in a Female Mouse Model of Genital Tract Infection , 2003, Infection and Immunity.

[92]  F. Rojo,et al.  Transcriptional regulation of mexR, the repressor of Pseudomonas aeruginosa mexAB-oprM multidrug efflux pump. , 2002, FEMS microbiology letters.

[93]  J. Eswaran,et al.  Structure and function of TolC: the bacterial exit duct for proteins and drugs. , 2004, Annual review of biochemistry.

[94]  W. V. van Wamel,et al.  Rat/MgrA, a Regulator of Autolysis, Is a Regulator of Virulence Genes in Staphylococcus aureus , 2005, Infection and Immunity.

[95]  T. Hibi,et al.  Enhanced bacterial efflux system is the first step to the development of metronidazole resistance in Helicobacter pylori. , 2011, Biochemical and biophysical research communications.

[96]  S. Diggle,et al.  The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. , 2005, Microbiology.

[97]  L. Piddock Clinically Relevant Chromosomally Encoded Multidrug Resistance Efflux Pumps in Bacteria , 2006, Clinical Microbiology Reviews.

[98]  J. Palomino,et al.  Efflux as a mechanism for drug resistance in Mycobacterium tuberculosis. , 2011, FEMS immunology and medical microbiology.

[99]  L. Eckmann,et al.  How bile acids confer gut mucosal protection against bacteria. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J. Eastgate,et al.  Erwinia amylovora: the molecular basis of fireblight disease. , 2000, Molecular plant pathology.

[101]  M. Surette,et al.  Cost of cell–cell signalling in Pseudomonas aeruginosa: why it can pay to be signal-blind , 2006, Nature Reviews Microbiology.

[102]  K. Minamisawa,et al.  Involvement of the SmeAB Multidrug Efflux Pump in Resistance to Plant Antimicrobials and Contribution to Nodulation Competitiveness in Sinorhizobium meliloti , 2011, Applied and Environmental Microbiology.

[103]  T. Tsuchiya,et al.  Expression in Escherichia coli of a New Multidrug Efflux Pump, MexXY, from Pseudomonas aeruginosa , 1999, Antimicrobial Agents and Chemotherapy.

[104]  Jessica M. A. Blair,et al.  Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. , 2009, Current opinion in microbiology.

[105]  A. Yamaguchi,et al.  AcrAB Multidrug Efflux Pump Regulation in Salmonella enterica serovar Typhimurium by RamA in Response to Environmental Signals , 2008, Journal of Biological Chemistry.

[106]  L. Piddock Multidrug-resistance efflux pumps ? not just for resistance , 2006, Nature Reviews Microbiology.

[107]  J. Ramos,et al.  Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere , 2007, Genome Biology.

[108]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[109]  D. Beier,et al.  Two-Component Systems of Helicobacter pylori Contribute to Virulence in a Mouse Infection Model , 2003, Infection and Immunity.

[110]  G. Sachs,et al.  The effect of environmental pH on the proton motive force of Helicobacter pylori. , 1996, Gastroenterology.

[111]  S. Projan,et al.  Transcription Profiling of the mgrA Regulon in Staphylococcus aureus , 2006, Journal of bacteriology.

[112]  J. Davies,et al.  Origins, acquisition and dissemination of antibiotic resistance determinants. , 1997, Ciba Foundation symposium.

[113]  I. Paulsen Multidrug efflux pumps and resistance: regulation and evolution. , 2003, Current opinion in microbiology.

[114]  A. Alonso,et al.  Environmental selection of antibiotic resistance genes. , 2001, Environmental microbiology.

[115]  J Davies,et al.  Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[116]  H. Nikaido Structure and mechanism of RND-type multidrug efflux pumps. , 2011, Advances in enzymology and related areas of molecular biology.

[117]  J. Hearst,et al.  The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals , 1996, Molecular microbiology.

[118]  Q. C. Truong-Bolduc,et al.  Characterization of NorR Protein, a Multifunctional Regulator of norA Expression in Staphylococcus aureus , 2003, Journal of bacteriology.

[119]  M. Saier,et al.  SMR-type multidrug resistance pumps. , 2001, Current opinion in drug discovery & development.

[120]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[121]  J. Martínez,et al.  Clinical impact of the over-expression of efflux pump in nonfermentative Gram-negative bacilli, development of efflux pump inhibitors. , 2008, Current drug targets.

[122]  K. Nelson,et al.  Comparative genomics of microbial drug efflux systems. , 2001, Journal of molecular microbiology and biotechnology.

[123]  T. Stone,et al.  Involvement of kynurenines in Huntington’s disease and stroke-induced brain damage , 2012, Journal of Neural Transmission.

[124]  G. Pessi,et al.  Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum. , 2010, FEMS microbiology letters.

[125]  Fernando Baquero,et al.  Predicting antibiotic resistance , 2007, Nature Reviews Microbiology.

[126]  R. Hancock,et al.  Multidrug Efflux Systems Play an Important Role in the Invasiveness of Pseudomonas aeruginosa , 2002, The Journal of experimental medicine.

[127]  Gilla Kaplan,et al.  The Role of MmpL8 in Sulfatide Biogenesis and Virulence of Mycobacterium tuberculosis* , 2004, Journal of Biological Chemistry.

[128]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[129]  F. Baquero,et al.  Mechanisms of iron acquisition and bacterial virulence. , 1990, FEMS microbiology reviews.

[130]  E. López-Solanilla,et al.  The role of several multidrug resistance systems in Erwinia chrysanthemi pathogenesis. , 2006, Molecular plant-microbe interactions : MPMI.

[131]  H. Wexler,et al.  Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. , 2007, Microbial pathogenesis.

[132]  H. Nikaido,et al.  Mechanisms of RND multidrug efflux pumps. , 2009, Biochimica et biophysica acta.

[133]  F. O'Gara,et al.  MexT modulates virulence determinants in Pseudomonas aeruginosa independent of the MexEF-OprN efflux pump. , 2009, Microbial pathogenesis.

[134]  W. Shafer,et al.  Off-Target Gene Regulation Mediated by Transcriptional Repressors of Antimicrobial Efflux Pump Genes in Neisseria gonorrhoeae , 2011, Antimicrobial Agents and Chemotherapy.

[135]  K. Poole,et al.  Influence of the MexAB-OprM Multidrug Efflux System on Quorum Sensing in Pseudomonas aeruginosa , 1998, Journal of bacteriology.

[136]  Danny S. Park,et al.  Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization , 2012, PloS one.

[137]  F. Baquero From pieces to patterns: evolutionary engineering in bacterial pathogens , 2004, Nature Reviews Microbiology.

[138]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[139]  J. Martínez,et al.  A global view of antibiotic resistance. , 2009, FEMS microbiology reviews.

[140]  J. Martínez The role of natural environments in the evolution of resistance traits in pathogenic bacteria , 2009, Proceedings of the Royal Society B: Biological Sciences.

[141]  Cheryl P. Andam,et al.  Multilevel populations and the evolution of antibiotic resistance through horizontal gene transfer. , 2011, FEMS microbiology reviews.

[142]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[143]  D. Provenzano,et al.  Vibrio cholerae RND Family Efflux Systems Are Required for Antimicrobial Resistance, Optimal Virulence Factor Production, and Colonization of the Infant Mouse Small Intestine , 2008, Infection and Immunity.

[144]  F. Baquero,et al.  Beyond serial passages: new methods for predicting the emergence of resistance to novel antibiotics. , 2011, Current opinion in pharmacology.

[145]  J. Martínez,et al.  Environmental pollution by antibiotics and by antibiotic resistance determinants. , 2009, Environmental pollution.

[146]  J. Martínez,et al.  Metabolic regulation of antibiotic resistance. , 2011, FEMS microbiology reviews.

[147]  Yanpeng Ding,et al.  NorB, an Efflux Pump in Staphylococcus aureus Strain MW2, Contributes to Bacterial Fitness in Abscesses , 2008, Journal of bacteriology.

[148]  W. V. van Wamel,et al.  Characterization of RAT, an autolysis regulator in Staphylococcus aureus , 2003, Molecular microbiology.

[149]  Jiping Zeng,et al.  Helicobacter pylori protein response to human bile stress. , 2008, Journal of medical microbiology.

[150]  F. O'Gara,et al.  Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa , 2009, Nucleic acids research.

[151]  T. Tsuchiya,et al.  Multidrug efflux transporters in the MATE family. , 2009, Biochimica et biophysica acta.

[152]  F. Rojo,et al.  Overproduction of the multidrug efflux pump MexEF-OprN does not impair Pseudomonas aeruginosa fitness in competition tests, but produces specific changes in bacterial regulatory networks. , 2012, Environmental microbiology.

[153]  Guennaelle Dieppois,et al.  The Transcriptional Regulator CzcR Modulates Antibiotic Resistance and Quorum Sensing in Pseudomonas aeruginosa , 2012, PloS one.

[154]  P. Cornelis,et al.  Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. , 2002, Microbiology.

[155]  W. Shafer,et al.  MpeR Regulates the mtr Efflux Locus in Neisseria gonorrhoeae and Modulates Antimicrobial Resistance by an Iron-Responsive Mechanism , 2012, Antimicrobial Agents and Chemotherapy.

[156]  H. Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2009, Drugs.

[157]  M. Reed,et al.  Contribution of the Mycobacterium tuberculosis MmpL Protein Family to Virulence and Drug Resistance , 2005, Infection and Immunity.

[158]  Keisuke Sakurai,et al.  Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket , 2011, Nature.

[159]  J. Davies,et al.  Antibiotic preparations contain DNA: a source of drug resistance genes? , 1993, Antimicrobial Agents and Chemotherapy.

[160]  Akira Ishihama,et al.  Transcriptional response of Escherichia coli to external copper , 2005, Molecular microbiology.

[161]  J. Martínez,et al.  Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. , 2009, FEMS microbiology reviews.

[162]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[163]  J. Hearst,et al.  Genes acrA and acrB encode a stress‐induced efflux system of Escherichia coli , 1995, Molecular microbiology.

[164]  A. Driessen,et al.  Distribution and Physiology of ABC-Type Transporters Contributing to Multidrug Resistance in Bacteria , 2007, Microbiology and Molecular Biology Reviews.

[165]  H. Nikaido,et al.  Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein , 2003, Molecular microbiology.

[166]  H. Loferer,et al.  Identification by RNA Profiling and Mutational Analysis of the Novel Copper Resistance Determinants CrdA (HP1326), CrdB (HP1327), and CzcB (HP1328) in Helicobacter pylori , 2002, Journal of bacteriology.

[167]  T. Hibi,et al.  Contribution of efflux pumps to clarithromycin resistance in Helicobacter pylori , 2010, Journal of gastroenterology and hepatology.

[168]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[169]  Ronald K. Taylor,et al.  The Bile Response Repressor BreR Regulates Expression of the Vibrio cholerae breAB Efflux System Operon , 2008, Journal of bacteriology.