Sequent calculus proof theory of intuitionistic apartness and order relations
暂无分享,去创建一个
[1] Roy Dyckhoff,et al. Admissibility of Structural Rules for Contraction-Free Systems of Intuitionistic Logic , 2000, J. Symb. Log..
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] A. G. Dragálin. Mathematical Intuitionism. Introduction to Proof Theory , 1988 .
[4] R. Statman,et al. Equality in the Presence of Apartness , 1979 .
[5] Lev Gordeev,et al. Basic proof theory , 1998 .
[6] Dana S. Scott. Extending the topological interpretation to intuitionistic analysis , 1968 .
[7] G. Jantzen. 1988 , 1988, The Winning Cars of the Indianapolis 500.
[8] Jan von Plato,et al. From Kripke Models to Algebraic Counter-Valuations , 1998, TABLEAUX.
[9] Craig Smorynski. On Axiomatizing Fragments , 1977, J. Symb. Log..
[10] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[11] T. Coquand,et al. The Hahn-Banach Theorem in Type Theory , 1998 .
[12] Dana S. Scott,et al. Extending the Topological Interpretation to Intuitionistic Analysis, II , 1970 .
[13] G. Gentzen. New version of the consistency proof for elementary number theory , 1969 .
[14] Roy Dyckhoff,et al. Contraction-free sequent calculi for intuitionistic logic , 1992, Journal of Symbolic Logic.
[15] Jiirg Hudelmaier,et al. Bounds for cut elimination in intuitionistic propositional logic , 1992, Arch. Math. Log..