Tukey g-and-h Random Fields

ABSTRACT We propose a new class of transGaussian random fields named Tukey g-and-h (TGH) random fields to model non-Gaussian spatial data. The proposed TGH random fields have extremely flexible marginal distributions, possibly skewed and/or heavy-tailed, and, therefore, have a wide range of applications. The special formulation of the TGH random field enables an automatic search for the most suitable transformation for the dataset of interest while estimating model parameters. Asymptotic properties of the maximum likelihood estimator and the probabilistic properties of the TGH random fields are investigated. An efficient estimation procedure, based on maximum approximated likelihood, is proposed and an extreme spatial outlier detection algorithm is formulated. Kriging and probabilistic prediction with TGH random fields are developed along with prediction confidence intervals. The predictive performance of TGH random fields is demonstrated through extensive simulation studies and an application to a dataset of total precipitation in the south east of the United States. Supplementary materials for this article are available online.

[1]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[2]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[3]  Chris A. Glasbey,et al.  A latent Gaussian model for compositional data with zeros , 2008 .

[4]  V. Oliveira On Optimal Point and Block Prediction in Log-Gaussian Random Fields , 2006 .

[5]  Victor De Oliveira,et al.  On shortest prediction intervals in log-Gaussian random fields , 2009, Comput. Stat. Data Anal..

[6]  N. Cressie,et al.  Statistics for Spatial Data. , 1992 .

[7]  David C. Hoaglin,et al.  Summarizing Shape Numerically: The g‐and‐h Distributions , 2011 .

[8]  B. Gräler Modelling skewed spatial random fields through the spatial vine copula , 2014 .

[9]  Aapo Hyv Estimation of Non-Normalized Statistical Models by Score Matching , 2005 .

[10]  Ying Sun,et al.  Geostatistics for Large Datasets , 2012 .

[11]  T. Sweeting Uniform Asymptotic Normality of the Maximum Likelihood Estimator , 1980 .

[12]  M. Genton,et al.  Short‐Term Wind Speed Forecasting for Power System Operations , 2012 .

[13]  M. Steel,et al.  Non-Gaussian spatiotemporal modelling through scale mixing , 2011 .

[14]  A. Hyvärinen,et al.  Estimation of Non-normalized Statistical Models , 2009 .

[15]  Henning Omre,et al.  T-distributed Random Fields : A Parametric Model for Heavy-tailed Random Fields , 2006 .

[16]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[17]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[18]  Marc G. Genton,et al.  Multivariate log‐skew‐elliptical distributions with applications to precipitation data , 2009 .

[19]  N. Cressie,et al.  Fixed rank kriging for very large spatial data sets , 2008 .

[20]  Henning Omre,et al.  Skew-Gaussian random fields , 2014 .

[21]  Marc G. Genton,et al.  The Multivariate g-and-h Distribution , 2006, Technometrics.

[22]  Mark F. J. Steel,et al.  Non-Gaussian Bayesian Geostatistical Modeling , 2006 .

[23]  M. Genton,et al.  Probabilistic and Inferential Aspects of Skew-Symmetric Models Special Issue: "IV International Workshop in honour of Adelchi Azzalini's 60th Birthday" Identifiability problems in some non-Gaussian spatial random fields , 2012 .

[24]  T. Raghunathan,et al.  Multiple imputation using multivariate gh transformations , 2012 .

[25]  A. Gelfand,et al.  Gaussian predictive process models for large spatial data sets , 2008, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[26]  Adelchi Azzalini,et al.  The Skew-Normal and Related Families , 2018 .

[27]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[28]  B. Mallick,et al.  A Bayesian prediction using the skew Gaussian distribution , 2004 .

[29]  Craig J. Johns,et al.  Infilling Sparse Records of Spatial Fields , 2003 .

[30]  Noel A Cressie,et al.  The asymptotic distribution of REML estimators , 1993 .

[31]  Marc G. Genton,et al.  Correlation Models for Temperature Fields , 2011 .

[32]  Chris A. Glasbey,et al.  A latent Gaussian Markov random‐field model for spatiotemporal rainfall disaggregation , 2003 .

[33]  Henning Omre,et al.  T-distributed Random Fields: A Parametric Model for Heavy-tailedWell-log Data1 , 2007 .

[34]  Marc G. Genton,et al.  Skew-elliptical distributions and their applications : a journey beyond normality , 2004 .

[35]  Marc G. Genton,et al.  Efficient maximum approximated likelihood inference for Tukey's g-and-h distribution , 2015, Comput. Stat. Data Anal..

[36]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[37]  Faming Liang,et al.  A BAYESIAN SPATIO-TEMPORAL GEOSTATISTICAL MODEL WITH AN AUXILIARY LATTICE FOR LARGE DATASETS , 2014 .

[38]  B. Kedem,et al.  Bayesian Prediction of Transformed Gaussian Random Fields , 1997 .

[39]  D. Bolin,et al.  Geostatistical Modelling Using Non‐Gaussian Matérn Fields , 2015 .

[40]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[41]  Martinez Jorge,et al.  Some properties of the tukey g and h family of distributions , 1984 .

[42]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[43]  Michael L. Stein,et al.  Interpolation of spatial data , 1999 .

[44]  Chris Field Using the gh distribution to model extreme wind speeds , 2004 .

[45]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[46]  Haotian Hang,et al.  Inconsistent Estimation and Asymptotically Equal Interpolations in Model-Based Geostatistics , 2004 .

[47]  Aapo Hyvärinen,et al.  Estimation of Non-Normalized Statistical Models by Score Matching , 2005, J. Mach. Learn. Res..

[48]  D. Zimmerman,et al.  Towards reconciling two asymptotic frameworks in spatial statistics , 2005 .

[49]  Eric M. Aldrich,et al.  Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center , 2006 .

[50]  Hao Zhang,et al.  On spatial skew‐Gaussian processes and applications , 2009 .