A Conceptual Framework and Comparison of Spatial Data Models

This paper examines the major types of spatial data models currently known and places these models in a comprehensive framework. This framework is used to provide clarification of how varying data models, as well as their inherent advantages and disadvantages, are interrelated. It also provides an insight into how these conflicting demands may be balanced in a more systematic and predictable manner for practical applications, and reveals directions for needed future research. On examine les principaux types de modeles de donnees spatiales actuels, et on les place dans un cadre global. Ce cadre est utilise pour eclaircir comment ces divers modeles spatiaux, de meme que leurs avantages et desavantages, sont interrelies. Le cadre laisse aussi voir comment ces demandes contradictoires peuvent etre equilibrees d'une facon plus systematique et previsible pour des applications pratiques, et revele les directions que doit prendre la recherche future.

[1]  Donna J. Peuquet,et al.  An Examination Of Techniques For Reformatting Digital Cartographic Data / Part 2: The Vector-To-Raster Process , 1981 .

[2]  Frank Wm. Tompa Data Structure Design , 1977 .

[3]  R. D. Merrill Representation of contours and regions for efficient computer search , 1973, CACM.

[4]  D. T. Lee,et al.  Two-Dimensional Voronoi Diagrams in the Lp-Metric , 1980, J. ACM.

[5]  Narendra Ahuja On approaches to polygonal decomposition for hierarchical image representation , 1983, Comput. Vis. Graph. Image Process..

[6]  B. Boots Weighting Thiessen Polygons , 1980 .

[7]  Michael E. Senko,et al.  DIAM II: The binary infological level and its database language - FORAL , 1976, SIGMOD 1976.

[8]  Dana H. Ballard,et al.  Strip trees: a hierarchical representation for curves , 1981, CACM.

[9]  L. Gibson,et al.  Vectorization of raster images using hierarchical methods , 1982, Comput. Graph. Image Process..

[10]  Gregory Michael Hunter,et al.  Efficient computation and data structures for graphics. , 1978 .

[11]  Nicholas Chrisman,et al.  Cartographic Data Structures , 1975 .

[12]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[13]  DANIEL K. SCHOLTEN,et al.  Chain Coding with a Hexagonal Lattice , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Steven L. Tanimoto,et al.  Quad-Trees, Oct-Trees, and K-Trees: A Generalized Approach to Recursive Decomposition of Euclidean Space , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Roger L.T. Cederberg Chain-link coding and segmentation for raster scan devices , 1978 .

[16]  Richard J. Kopec AN ALTERNATIVE METHOD FOR THE CONSTRUCTION OF THIESSEN POLYGONS , 1963 .

[17]  M. F. Dacey,et al.  Some comments on certain technical aspects on geographic information systems Technical report no. 2 , 1965 .

[18]  Herbert Freeman,et al.  Computer Processing of Line-Drawing Images , 1974, CSUR.

[19]  King-Sun Fu,et al.  Data Structures, Computer Graphics, and Pattern Recognition , 1977 .

[20]  D. Mark Computer Analysis of Topography: A Comparison of Terrain Storage Methods , 1975 .

[21]  A. H. Thiessen PRECIPITATION AVERAGES FOR LARGE AREAS , 1911 .

[22]  Charles R. Dyer,et al.  Experiments on Picture Representation Using Regular Decomposition , 1976 .

[23]  Allen Klinger,et al.  PATTERNS AND SEARCH STATISTICS , 1971 .

[24]  Herbert Freeman,et al.  On the Encoding of Arbitrary Geometric Configurations , 1961, IRE Trans. Electron. Comput..

[25]  C. J. Date An Introduction to Database Systems , 1975 .

[26]  James Martin,et al.  Computer Data-Base Organization , 1975 .

[27]  Timothy L. Nyerges,et al.  Modeling the structure of cartographic information for query processing , 1980 .

[28]  Herbert Freeman,et al.  ANALYSIS AND MANIPULATION OF LINEAL MAP DATA , 1980 .

[29]  Warren Burton,et al.  Representation of many-sided polygons and polygonal lines for rapid processing , 1977, CACM.

[30]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[31]  Michael E. Senko,et al.  Data Structures and Accessing in Data-Base Systems. I: Evolution of Information Systems , 1973, IBM Syst. J..

[32]  E. F. Codd Data models in database management , 1981, SIGMOD 1981.

[33]  R. J. Stevens,et al.  Manipulation and Presentation of Multidimensional Image Data Using the Peano Scan , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  R. Fuller,et al.  Synergetics: Explorations in the Geometry of Thinking , 1975 .

[35]  I. Chakravarty A single-pass, chain generating algorithm for region boundaries , 1981 .

[36]  Donna J. Peuquet,et al.  Raster Processing: An Alternative Approach to Automated Cartographic Data Handling , 1979 .

[37]  Chris L. Jackins,et al.  Oct-trees and their use in representing three-dimensional objects , 1980 .

[38]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[39]  Theodosios Pavlidis,et al.  A hierarchical data structure for picture processing , 1975 .

[40]  J. Ross Mackay THE ALTERNATIVE CHOICE IN ISOPLETH INTERPOLATION , 1953 .

[41]  Jeffrey D. Ullman,et al.  Principles of Database Systems , 1980 .

[42]  J. L. Smith,et al.  A data structure and algorithm based on a linear key for a rectangle retrieval problem , 1983, Comput. Vis. Graph. Image Process..

[43]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.