Combustion of nano aluminum particles (Review)

Nano aluminum particles have received considerable attention in the combustion community; their physicochemical properties are quite favorable as compared with those of their micron-sized counterparts. The present work provides a comprehensive review of recent advances in the field of combustion of nano aluminum particles. The effect of the Knudsen number on heat and mass transfer properties of particles is first examined. Deficiencies of the currently available continuum models for combustion of nano aluminum particles are highlighted. Key physicochemical processes of particle combustion are identified and their respective time scales are compared to determine the combustion mechanisms for different particle sizes and pressures. Experimental data from several sources are gathered to elucidate the effect of the particle size on the flame temperature of aluminum particles. The flame structure and the combustion modes of aluminum particles are examined for wide ranges of pressures, particle sizes, and oxidizers. Key mechanisms that dictate the combustion behaviors are discussed. Measured burning times of nano aluminum particles are surveyed. The effects of the pressure, temperature, particle size, and type and concentration of the oxidizer on the burning time are discussed. A new correlation for the burning time of nano aluminum particles is established. Major outstanding issues to be addressed in the future work are identified.

[1]  J. B. Conway,et al.  Combustion of Metals in Oxygen , 1958 .

[2]  Martin Summerfield,et al.  Solid Propellant Rocket Research , 1960 .

[3]  A. W. Lemmon,et al.  Progress in ASTRONAUTICS and ROCKETRY , 1961 .

[4]  A. Maček,et al.  Ignition and combustion of aluminium particles in hot ambient gases , 1962 .

[5]  H. Seifert,et al.  Rocket Propulsion Elements , 1963 .

[6]  A. Maček,et al.  COMBUSTION STUDIES OF SINGLE ALUMINUM PARTICLES , 1963 .

[7]  A. Davis,et al.  Solid propellants: The combustion of particles of metal ingredients , 1963 .

[8]  D. Kuehl Ignition and combustion of aluminum and beryllium. , 1965 .

[9]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[10]  F. Williams,et al.  Experimental study of the combustion of single aluminum particles in O2/Ar , 1971 .

[11]  Edward A. Mason,et al.  Gaseous Diffusion Coefficients , 1972 .

[12]  O. Levenspiel Chemical Reaction Engineering , 1972 .

[13]  J. Prentice Combustion of laser-ignited aluminum droplets in wet and dry oxidizers , 1974 .

[14]  L. Stesik,et al.  Ignition and combustion of aluminum and zinc in air , 1977 .

[15]  A. Skorik,et al.  Temperature of aluminum particles at the time of ignition and combustion , 1982 .

[16]  Stephen Turns,et al.  Ignition of Aluminum Slurry Droplets , 1987 .

[17]  W. Johnson,et al.  Melting behavior of nanocrystalline aluminum powders , 1993 .

[18]  T. Theofanous,et al.  Ignition of aluminum droplets behind shock waves in water , 1994 .

[19]  K. Kuo,et al.  Ignition and combustion of boron particles , 1996 .

[20]  Iskender Gökalp,et al.  Studies on the Ignition and Burning of Levitated Aluminum Particles , 1996 .

[21]  M. Beckstead,et al.  Burn time measurements of single aluminum particles in steam and CO2 mixtures , 1996 .

[22]  E. Dreizin Experimental study of stages in aluminium particle combustion in air , 1996 .

[23]  R. Yetter,et al.  Flames structure measurement of single, isolated aluminum particles burning in air , 1996 .

[24]  Saburo Yuasa,et al.  Ignition and combustion of aluminum in oxygen/nitrogen mixture streams , 1997 .

[25]  R. Yetter,et al.  PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2 and N2O oxidizers, and comparison with model calculations , 1998 .

[26]  L. Allen,et al.  Melting point depression of Al clusters generated during the early stages of film growth: Nanocalorimetry measurements , 1998 .

[27]  Rodney L. Burton,et al.  Ignition and combustion of aluminum particles in H2/O2/N2 combustion products , 1998 .

[28]  V. Kolesnikov,et al.  Physics of alumimum particle combustion at zero-gravity , 1999 .

[29]  Rodney L. Burton,et al.  Combustion of aluminum particles in solid rocket motor flows , 1999 .

[30]  I. Altman On heat transfer between nanoparticles and gas at high temperatures , 1999 .

[31]  E. Dreizin On the mechanism of asymmetric aluminum particle combustion , 1999 .

[32]  D. E. Rosner,et al.  Energy transfer between an aerosol particle and gas at high temperature ratios in the Knudsen transition regime , 2000 .

[33]  O. V. Glazkov,et al.  Specific features of the reaction between ultrafine aluminum and water in a combustion regime , 2000 .

[34]  J. Lineberry,et al.  Combustion of Aluminum with Steam for Underwater Propulsion , 2001 .

[35]  C. Law,et al.  Combustion of Aluminum Particles in Carbon Dioxide , 2001 .

[36]  K. Kuo,et al.  Ignition and combustion of boron particles in fluorine-containing environments , 2001 .

[37]  C. Chauveau,et al.  Ignition and Combustion of Levitated Magnesium and Aluminum Particles in Carbon Dioxide , 2001 .

[38]  J. Seitzman,et al.  The effects of bimodal aluminum with ultrafine aluminum on the burning rates of solid propellants , 2002 .

[39]  Chang Q. Sun,et al.  Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom , 2002 .

[40]  P. Brousseau,et al.  Nanometric Aluminum in Explosives , 2002 .

[41]  A. Fedorov,et al.  Ignition of an Aluminum Particle , 2003 .

[42]  R. Armstrong,et al.  Enhanced Propellant Combustion with Nanoparticles , 2003 .

[43]  Michael R. Zachariah,et al.  Surface Passivation of Bare Aluminum Nanoparticles Using Perfluoroalkyl Carboxylic Acids , 2003 .

[44]  M. Zachariah,et al.  Importance of Phase Change of Aluminum in Oxidation of Aluminum Nanoparticles , 2004 .

[45]  N. Eisenreich,et al.  On the Mechanism of Low Temperature Oxidation for Aluminum Particles down to the Nano-Scale , 2004 .

[46]  H. Krier,et al.  TEMPERATURE MEASUREMENTS OF ALUMINUM PARTICLES BURNING IN CARBON DIOXIDE , 2005 .

[47]  M. Pantoya,et al.  Combustion Behavior of Highly Energetic Thermites: Nano versus Micron Composites , 2005 .

[48]  Nick G Glumac,et al.  Oxidizer and pressure effects on the combustion of 10-μm aluminum particles , 2005 .

[49]  E. Dreizin,et al.  Fully dense nano-composite energetic powders prepared by arrested reactive milling , 2005 .

[50]  Y. Liang,et al.  Numerical Simulation of Single Aluminum Particle Combustion (Review) , 2005 .

[51]  M. Zachariah,et al.  Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. , 2005, The journal of physical chemistry. B.

[52]  L. Meda,et al.  Nano-composites for rocket solid propellants , 2005 .

[53]  M. W. Beckstead,et al.  Correlating Aluminum Burning Times , 2005 .

[54]  Blaine W. Asay,et al.  Combustion velocities and propagation mechanisms of metastable interstitial composites , 2005 .

[55]  Curtis E. Johnson,et al.  Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating , 2005 .

[56]  H. Krier,et al.  Combustion of nanoaluminum at elevated pressure and temperature behind reflected shock waves , 2006 .

[57]  R. J. Jouet,et al.  Preparation and reactivity analysis of novel perfluoroalkyl coated aluminium nanocomposites , 2006 .

[58]  H. Krier,et al.  Modeling the combustion of nano-sized aluminum particles , 2006 .

[59]  S. Son,et al.  Melt dispersion mechanism for fast reaction of nanothermites , 2006 .

[60]  Fengshan Liu,et al.  Heat conduction from a spherical nano-particle: status of modeling heat conduction in laser-induced incandescence , 2006 .

[61]  A. Varma,et al.  Combustion of novel chemical mixtures for hydrogen generation , 2006 .

[62]  E. Dreizin,et al.  Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles , 2006 .

[63]  Vigor Yang,et al.  Modeling of combustion and ignition of solid-propellant ingredients , 2007 .

[64]  R. Yetter,et al.  Combustion of Nanoscale Al/MoO3 Thermite in Microchannels , 2007 .

[65]  V. Yang,et al.  Effect of Particle Size on Melting of Aluminum at Nano Scales , 2007 .

[66]  Vigor Yang,et al.  Combustion of nano-aluminum and liquid water , 2007 .

[67]  A. Gromov,et al.  Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin , 2007 .

[68]  H. Krier,et al.  Evidence for the transition from the diffusion-limit in aluminum particle combustion , 2007 .

[69]  E. Dreizin,et al.  Heating and Ignition of Metal Particles in the Transition Heat Transfer Regime , 2008 .

[70]  Himanshu Tyagi,et al.  Increased hot-plate ignition probability for nanoparticle-laden diesel fuel. , 2008, Nano letters.

[71]  M. Pantoya,et al.  Melt dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters , 2008 .

[72]  P. Puri Multi scale modeling of ignition and combustion of micro and nano aluminum particles , 2008 .

[73]  K. V. Anand,et al.  Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion , 2009 .

[74]  E. Dreizin,et al.  On possibility of vapor-phase combustion for fine aluminum particles , 2009 .

[75]  E. Dreizin,et al.  Oxidation of aluminum particles in the presence of water. , 2009, The journal of physical chemistry. B.

[76]  H. Krier,et al.  A correlation for burn time of aluminum particles in the transition regime , 2009 .

[77]  V. Levitas Burn time of aluminum nanoparticles: Strong effect of the heating rate and melt-dispersion mechanism , 2009 .

[78]  M. Zachariah,et al.  Combustion characteristics of boron nanoparticles , 2008 .

[79]  R. Yetter,et al.  Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite , 2009 .

[80]  R. Yetter,et al.  Effect of Nano‐Aluminum and Fumed Silica Particles on Deflagration and Detonation of Nitromethane , 2009 .

[81]  Vigor Yang,et al.  Effect of particle size on combustion of aluminum particle dust in air , 2009 .

[82]  Richard A. Yetter,et al.  Metal particle combustion and nanotechnology , 2009 .

[83]  G. Chauhan,et al.  Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles , 2009 .

[84]  V. Yang,et al.  Thermo-mechanical behavior of nano aluminum particles with oxide layers during melting , 2010 .

[85]  M. Zachariah,et al.  Simultaneous Pressure and Optical Measurements of Nanoaluminum Thermites: Investigating the Reaction Mechanism , 2010 .

[86]  E. Dreizin,et al.  Combustion times and emission profiles of micron-sized aluminum particles burning in different environments , 2010 .

[87]  H. Krier,et al.  Gas-Phase Reaction in Nanoaluminum Combustion , 2010 .

[88]  M. Zachariah,et al.  On the role of built-in electric fields on the ignition of oxide coated nanoaluminum: Ion mobility versus Fickian diffusion , 2010 .

[89]  A. V. Shul’gin,et al.  Point model of combustion of aluminum nanoparticles in the reflected shock wave , 2011 .

[90]  V. Levitas,et al.  Digital Repository @ Iowa State University Size and mechanics effects in surface-induced melting of nanoparticles , 2022 .

[91]  L. Qiao,et al.  Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles , 2011 .

[92]  David M J S Bowman,et al.  Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. , 2011, Nature communications.

[93]  R. Yetter,et al.  Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites , 2011 .

[94]  E. Dreizin,et al.  Combustion characteristics of micron-sized aluminum particles in oxygenated environments , 2011 .

[95]  Xiaolin Zheng,et al.  Flash ignition of Al nanoparticles: Mechanism and applications , 2011 .

[96]  A. Nakano,et al.  Molecular Dynamics Study of Size Dependence of Combustion of Aluminum Nanoparticles , 2012 .

[97]  J. Buckmaster,et al.  An examination of the shrinking-core model of sub-micron aluminum combustion , 2013 .

[98]  R. Yetter,et al.  Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures , 2013 .

[99]  V. Yang,et al.  Pyrophoricity of nascent and passivated aluminum particles at nano-scales , 2013 .

[100]  Rajiv K. Kalia,et al.  Size effect on the oxidation of aluminum nanoparticle: Multimillion-atom reactive molecular dynamics simulations , 2013 .

[101]  V. Levitas Mechanochemical mechanism for reaction of aluminium nano- and micrometre-scale particles , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[102]  M. B. Talawar,et al.  Nanoparticles of energetic materials: synthesis and properties (review) , 2013 .

[103]  E. Dreizin,et al.  Model of heterogeneous combustion of small particles , 2013 .

[104]  C. Berndt,et al.  Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles , 2014, Journal of Nanoparticle Research.

[105]  V. Yang,et al.  Thermochemical behavior of nano-sized aluminum-coated nickel particles , 2014, Journal of Nanoparticle Research.

[106]  H. Krier,et al.  Heat transfer effects in nano-aluminum combustion at high temperatures , 2014 .

[107]  R. Yetter,et al.  Combustion of Frozen Nanoaluminum and Water Mixtures , 2014 .

[108]  Suling Zhao,et al.  Synthesis of size-controlled and discrete core–shell aluminum nanoparticles with a wet chemical process , 2014 .

[109]  Michael R. Zachariah,et al.  Do nanoenergetic particles remain nano-sized during combustion? , 2014 .