Direct evidence of non-disk optical continuum emission around an active black hole

[1]  Martin P. Ward,et al.  X-ray/UV/optical variability of NGC 4593 with Swift: reprocessing of X-rays by an extended reprocessor , 2017, Monthly Notices of the Royal Astronomical Society.

[2]  J. Kaastra,et al.  Multi-wavelength campaign on NGC 7469 (cid:63) III. Spectral energy distribution and the AGN wind photoionisation modelling, plus detection of diffuse X-rays from the starburst with Chandra HETGS , 2018 .

[3]  K. Korista,et al.  Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags , 2017, 1712.04025.

[4]  S. Zucker,et al.  Methods of Reverberation Mapping. I. Time-lag Determination by Measures of Randomness , 2017, 1708.04477.

[5]  Yan-Rong Li,et al.  Failed Radiatively Accelerated Dusty Outflow Model of the Broad Line Region in Active Galactic Nuclei. I. Analytical Solution , 2017, 1706.07958.

[6]  S. Kaspi,et al.  Automatized Photometric Monitoring of Active Galactic Nuclei with the 46 cm Telescope of the Wise Observatory , 2017, 1706.05463.

[7]  F. P. Keenan,et al.  The 2017 release of CLOUDY , 2017, 1705.10877.

[8]  P. Hall,et al.  Non-blackbody Disks Can Help Explain Inferred AGN Accretion Disk Sizes , 2017, 1705.05467.

[9]  C. Done,et al.  The origin of the UV/optical lags in NGC 5548 , 2016, 1603.09564.

[10]  C. Gaskell The case for cases B and C: intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes , 2015, 1512.09291.

[11]  Yan-Rong Li,et al.  A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING , 2016, 1608.03741.

[12]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION AND BROADBAND TIME DELAYS IN NGC 5548 , 2015, 1510.05648.

[13]  H. Netzer Revisiting the Unified Model of Active Galactic Nuclei , 2015, 1505.00811.

[14]  M. C. Bentz,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. II. SWIFT AND HST REVERBERATION MAPPING OF THE ACCRETION DISK OF NGC 5548 , 2015, 1501.05951.

[15]  M. Bentz,et al.  The AGN Black Hole Mass Database , 2014, 1411.2596.

[16]  J. Michael Shull,et al.  HST-COS OBSERVATIONS OF AGNs. II. EXTENDED SURVEY OF ULTRAVIOLET COMPOSITE SPECTRA FROM 159 ACTIVE GALACTIC NUCLEI , 2014, 1408.5900.

[17]  C. Kochanek,et al.  THE AVERAGE SIZE AND TEMPERATURE PROFILE OF QUASAR ACCRETION DISKS , 2014, 1401.2785.

[18]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set , 2013, 1311.6475.

[19]  A. Laor,et al.  Radiation pressure confinement – II. Application to the broad-line region in active galactic nuclei , 2013, 1309.7953.

[20]  D. Chelouche THE CASE FOR STANDARD IRRADIATED ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI , 2013, 1305.6507.

[21]  Shay Zucker,et al.  QUASAR CARTOGRAPHY: FROM BLACK HOLE TO BROAD-LINE REGION SCALES , 2013, 1305.6499.

[22]  Bradley M. Peterson,et al.  THE LOW-LUMINOSITY END OF THE RADIUS–LUMINOSITY RELATIONSHIP FOR ACTIVE GALACTIC NUCLEI , 2013, 1303.1742.

[23]  T. Alexander,et al.  Improved AGN light curve analysis with the z-transformed discrete correlation function , 2013, 1302.1508.

[24]  M. Haas,et al.  Photometric reverberation mapping of 3C 120 , 2012, 1303.3506.

[25]  A. Laor,et al.  Type 1 AGN at low z. I. Emission properties , 2012 .

[26]  A. Laor,et al.  Type 1 AGN at low z , 2012, 1203.5005.

[27]  A. Laor,et al.  Cold accretion discs and lineless quasars , 2011, 1106.4969.

[28]  Krzysztof Hryniewicz,et al.  The origin of the broad line region in active galactic nuclei , 2010, 1010.6201.

[29]  C. S. Kochanek,et al.  AN ALTERNATIVE APPROACH TO MEASURING REVERBERATION LAGS IN ACTIVE GALACTIC NUCLEI , 2010, 1008.0641.

[30]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[31]  A. Laor,et al.  THE RADIATIVE EFFICIENCY OF ACCRETION FLOWS IN INDIVIDUAL ACTIVE GALACTIC NUCLEI , 2010, 1012.3213.

[32]  E. Agol,et al.  QUASAR ACCRETION DISKS ARE STRONGLY INHOMOGENEOUS , 2010, 1012.3169.

[33]  P. Schechter,et al.  SIZES AND TEMPERATURE PROFILES OF QUASAR ACCRETION DISKS FROM CHROMATIC MICROLENSING , 2010, 1007.1665.

[34]  Research Center for the Early Universe,et al.  LONG-TERM OPTICAL CONTINUUM COLOR VARIABILITY OF NEARBY ACTIVE GALACTIC NUCLEI , 2010, 1001.5162.

[35]  Christopher W. Morgan,et al.  THE QUASAR ACCRETION DISK SIZE–BLACK HOLE MASS RELATION , 2007, 0707.0305.

[36]  K. Korista,et al.  VARIABLE INTRINSIC ABSORPTION IN Mrk 279 , 2008, 0812.0506.

[37]  M. Dietrich,et al.  A Relation between Supermassive Black Hole Mass and Quasar Metallicity? , 2003, astro-ph/0307247.

[38]  E. Sirko,et al.  Spectral energy distributions of marginally self-gravitating quasi-stellar object discs , 2003 .

[39]  J. Shields,et al.  Continuum and Emission-Line Strength Relations for a Large Active Galactic Nuclei Sample , 2002, astro-ph/0208348.

[40]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[41]  P. Martini,et al.  Hubble Space Telescope Imaging of the Circumnuclear Environments of the CfA Seyfert Galaxies: Nuclear Spirals and Fueling , 2002, astro-ph/0201185.

[42]  Emmanuel Bertin,et al.  The TERAPIX Pipeline , 2002 .

[43]  Yu. F. Malkov,et al.  Monitoring of the optical and 2.5-11.7 mu m spectrum and mid-IR imaging of the Seyfert 1 galaxy Mrk 279 with ISO , 2001, astro-ph/0102356.

[44]  K. Korista,et al.  The Variable Diffuse Continuum Emission of Broad-Line Clouds , 2001, astro-ph/0101117.

[45]  W. Welsh,et al.  On the Reliability of Cross‐Correlation Function Lag Determinations in Active Galactic Nuclei , 1999, astro-ph/9911112.

[46]  Bradley M. Peterson,et al.  Steps toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XIV. Intensive Optical Spectrophotometric Observations of NGC 7469 , 1998 .

[47]  Bradley M. Peterson,et al.  On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei , 1998, astro-ph/9802103.

[48]  A. Kinney,et al.  Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .

[49]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[50]  J. Baldwin,et al.  Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines , 1995, astro-ph/9510080.

[51]  F. Pijpers,et al.  Reverberation mapping of active galactic nuclei: The SOLA method for time-series inversion , 1994, astro-ph/9406070.

[52]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[53]  I. Glass,et al.  Variability studies of Seyfert galaxies – I. Broad-band optical photometry , 1992 .

[54]  W. Press,et al.  Interpolation, realization, and reconstruction of noisy, irregularly sampled data , 1992 .

[55]  H. Mendelson,et al.  High-rate spectroscopic active galactic nucleus monitoring at the wise observatory. II: NGC 5548 , 1990 .

[56]  H. Mendelson,et al.  High-rate spectroscopic active galactic nucleus monitoring at the Wise Observatory. I. Markarian 279 , 1990 .

[57]  E. Phinney Dusty Disks and the Infrared Emission from AGN , 1989 .

[58]  J. Choloniewski The Shape and Variability of the Nonthermal Component of the Optical Spectra of Active Galaxies , 1981 .

[59]  Robert E. Wilson,et al.  BLACK HOLES IN BINARY SYSTEMS , 1973 .

[60]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .