Physiopathology of the cochlear microcirculation

Normal blood supply to the cochlea is critically important for establishing the endocochlear potential and sustaining production of endolymph. Abnormal cochlear microcirculation has long been considered an etiologic factor in noise-induced hearing loss, age-related hearing loss (presbycusis), sudden hearing loss or vestibular function, and Meniere's disease. Knowledge of the mechanisms underlying the pathophysiology of cochlear microcirculation is of fundamental clinical importance. A better understanding of cochlear blood flow (CoBF) will enable more effective management of hearing disorders resulting from aberrant blood flow. This review focuses on recent discoveries and findings related to the physiopathology of the cochlear microvasculature.

[1]  C. Borghi,et al.  MENIERE’S DISEASE: UPDATE OF ETIOPATHOGENETIC THEORIES AND PROPOSAL OF A POSSIBLE MODEL OF EXPLANATION , 2010, Acta clinica Belgica.

[2]  R. Kimura Animal models of inner ear vascular disturbances. , 1986, American journal of otolaryngology.

[3]  W. Mann,et al.  Fast alterations of vascular endothelial growth factor (VEGF) expression and that of its receptors (Flt-1, Flk-1 and Neuropilin) in the cochlea of guinea pigs after moderate noise exposure , 2006, European Archives of Oto-Rhino-Laryngology.

[4]  M. Sakagami,et al.  Quantitative evaluation of pinocytosis of capillaries of the stria vascularis under normal and experimental conditions. , 1987, Acta oto-laryngologica.

[5]  K. Nagahara,et al.  Effects of prostaglandins on perilymphatic oxygenation. Enhancement of cochlear autoregulation by prostacyclin. , 1988, Acta oto-laryngologica. Supplementum.

[6]  E. Yamoah,et al.  Expression and Functional Phenotype of Mouse ERG K+ Channels in the Inner Ear: Potential Role in K+ Regulation in the Inner Ear , 2005, The Journal of Neuroscience.

[7]  I. Tasaki,et al.  Nonuniform response in the squid axon membrana under voltage-clamp. , 1958, The American journal of physiology.

[8]  R. Wilson,et al.  Vascular endothelial growth factor modulates contractile response in microvascular lung pericytes. , 2006, American journal of surgery.

[9]  Dora Brites,et al.  Looking at the blood–brain barrier: Molecular anatomy and possible investigation approaches , 2010, Brain Research Reviews.

[10]  A. Nuttall,et al.  Effect of endolymphatic hydrops on capsaicin-evoked increase in cochlear blood flow. , 1995, Acta oto-laryngologica.

[11]  R. Ruan Possible Roles of Nitric Oxide in the Physiology and Pathophysiology of the Mammalian Cochlea , 2002, Annals of the New York Academy of Sciences.

[12]  Ruikang K. Wang,et al.  Directional blood flow imaging in volumetric optical microangiography achieved by digital frequency modulation. , 2008, Optics letters.

[13]  Takashi Shimizu,et al.  Pathological alterations of strial capillaries in dominant white spotting W/W v mice , 2005, Hearing Research.

[14]  D. Sims Diversity Within Pericytes , 2000, Clinical and experimental pharmacology & physiology.

[15]  C. Megerian,et al.  Contemporary perspectives on the pathophysiology of Meniere's disease: implications for treatment , 2010, Current opinion in otolaryngology & head and neck surgery.

[16]  H. Dengerink,et al.  The effects of noise on histological measures of the cochlear vasculature and red blood cells: A review , 1987, Hearing Research.

[17]  S. Yamagishi,et al.  Pericyte biology and diseases. , 2005, International journal of tissue reactions.

[18]  O. H. Lowry,et al.  The electrolytes of the labyrinthine fluids , 1954, The Laryngoscope.

[19]  W. Tawackoli,et al.  Disruption of cochlear potentials by chemical asphyxiants. Cyanide and carbon monoxide. , 2001, Neurotoxicology and teratology.

[20]  A. Nuttall,et al.  Substance P increases cochlear blood flow without changing cochlear electrophysiology in rats , 1993, Hearing Research.

[21]  A. Nuttall,et al.  The influence of loud sound on red blood cell velocity and blood vessel diameter in the cochlea , 1992, Hearing Research.

[22]  Mark J Schnitzer,et al.  In Vivo Imaging of Mammalian Cochlear Blood Flow Using Fluorescence Microendoscopy , 2006, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[23]  J. Schacht,et al.  Cyclic GMP-dependent protein kinase-I in the guinea pig cochlea , 1999, Hearing Research.

[24]  M. Ruckenstein,et al.  Strial Dysfunction in the MRL-Faslpr mouse , 1999 .

[25]  R. Albera,et al.  Cochlear Blood Flow Modifications Induced by Anaesthetic Drugs in Middle Ear Surgery: Comparison Between Sevoflurane and Propofol , 2003, Acta oto-laryngologica.

[26]  S. Spicer,et al.  Spiral ligament pathology in quiet-aged gerbils , 2002, Hearing Research.

[27]  F. Albers,et al.  Cochlear blood flow in endolymphatic hydrops. , 1988, Acta oto-laryngologica.

[28]  I. Blasig,et al.  In Search of the Astrocytic Factor(s) Modulating Blood–Brain Barrier Functions in Brain Capillary Endothelial Cells In Vitro , 2005, Cellular and Molecular Neurobiology.

[29]  A. Fetoni,et al.  Anti‐Endothelial Autoantibodies in Patients With Sudden Hearing Loss , 1999, The Laryngoscope.

[30]  P. Meda,et al.  Connexin30 deficiency causes instrastrial fluid–blood barrier disruption within the cochlear stria vascularis , 2007, Proceedings of the National Academy of Sciences.

[31]  Xiaorui Shi Cochlear pericyte responses to acoustic trauma and the involvement of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. , 2009, The American journal of pathology.

[32]  H. Spiera,et al.  Sudden sensorineural hearing loss in patients with systemic lupus erythematosus or lupus-like syndromes and antiphospholipid antibodies. , 1998, The Journal of rheumatology.

[33]  Zhi Jian Zhang,et al.  Expression of P-glycoprotein in inner ear capillary endothelial cells of the guinea pig with special reference to blood–inner ear barrier , 1997, Brain Research.

[34]  Xueqian Wang,et al.  CNS Microvascular Pericytes Exhibit Multipotential Stem Cell Activity , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[35]  J. Lombard A novel mechanism for regulation of retinal blood flow by lactate: gap junctions, hypoxia, and pericytes. , 2006, American journal of physiology. Heart and circulatory physiology.

[36]  A. Nuttall,et al.  Electrically Stimulated Increases in Cochlear Blood Flow: I. Frequency and Intensity Effects , 1989, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  D. R. Anderson,et al.  Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. , 1994, Investigative ophthalmology & visual science.

[38]  R. A. Schmiedt,et al.  Age-related decreases in endocochlear potential are associated with vascular abnormalities in the stria vascularis , 1996, Hearing Research.

[39]  M. Ando,et al.  Postnatal vascular development in the lateral wall of the cochlear duct of gerbils: quantitative analysis by electron microscopy and confocal laser microscopy , 1998, Hearing Research.

[40]  B. Klapp,et al.  A model of peripherally developing hearing loss and tinnitus based on the role of hypoxia and ischemia. , 2006, Medical hypotheses.

[41]  A. Kakigi,et al.  Three-dimensional and ultrastructural relationships between intermediate cells and capillaries in the gerbil stria vascularis , 2001, Hearing Research.

[42]  B. MacVicar,et al.  Astrocyte control of the cerebrovasculature , 2007, Glia.

[43]  Steven Song,et al.  The role of pericytes in blood-vessel formation and maintenance. , 2005, Neuro-oncology.

[44]  P. Wangemann,et al.  Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss , 2005, BMC ear, nose, and throat disorders.

[45]  E. Borg,et al.  Cochlear blood flow in noise-damaged ears. , 1987, Acta oto-laryngologica.

[46]  V. Nehls,et al.  The versatility of microvascular pericytes: from mesenchyme to smooth muscle? , 2004, Histochemistry.

[47]  R. Duclaux,et al.  Sympathetic nerve regulation of cochlear blood flow during increases in blood pressure in humans , 1997, European Journal of Applied Physiology and Occupational Physiology.

[48]  S. Spicer,et al.  Differentiation of inner ear fibrocytes according to their ion transport related activity , 1991, Hearing Research.

[49]  Daniel C. Marcus,et al.  Age-Related Changes in Cochlear Endolymphatic Potassium and Potential in CD-1 and CBA/CaJ Mice , 2003, Journal of the Association for Research in Otolaryngology.

[50]  Peter Dallos,et al.  Positive endocochlear potential: Mechanism of production by marginal cells of stria vascularis , 1987, Hearing Research.

[51]  H. Takago,et al.  A vasoactive agent enhances the effect of ATP on cochlear blood flow. , 2001, Acta oto-laryngologica.

[52]  I. Schmidtmann,et al.  Noise exposure alters cyclooxygenase 1 (COX-1) and 5-lipoxygenase (5-LO) expression in the guinea pig cochlea. , 2010, Acta oto-laryngologica.

[53]  E. Ferrary,et al.  Mechanisms of endolymph secretion. , 1998, Kidney international. Supplement.

[54]  T. Yang,et al.  Microsomal prostaglandin E synthase-1 and blood pressure regulation. , 2007, Kidney international.

[55]  R. Gacek The course and central termination of first order neurons supplying vestibular endorgans in the cat. , 1969, Acta oto-laryngologica. Supplementum.

[56]  P. Bertholon,et al.  Cardiovascular and Thromboembolic Risk Factors in Idiopathic Sudden Sensorineural Hearing Loss: A Case-Control Study , 2010, Audiology and Neurotology.

[57]  Alfred L. Nuttall,et al.  Techniques for the observation and measurement of red blood cell velocity in vessels of the guinea pig cochlea , 1987, Hearing Research.

[58]  Flávia Barros,et al.  Idiopathic sudden sensorineural hearing loss: evolution in the presence of hypertension, diabetes mellitus and dyslipidemias , 2010, Brazilian journal of otorhinolaryngology.

[59]  R. Thalmann,et al.  Response of cochlear potentials to presumed alterations of ionic conductance: Endolymphatic perfusion of barium, valinomycin and nystatin , 1983, Hearing Research.

[60]  P. Wangemann,et al.  α1A-Adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro , 1998, Hearing Research.

[61]  A. Nuttall,et al.  Visualization and contractile activity of cochlear pericytes in the capillaries of the spiral ligament , 2009, Hearing Research.

[62]  Erik G Nelson,et al.  Presbycusis: A Human Temporal Bone Study of Individuals With Downward Sloping Audiometric Patterns of Hearing Loss and Review of the Literature , 2006, The Laryngoscope.

[63]  J. J. Wang,et al.  Relationship of Type 2 diabetes to the prevalence, incidence and progression of age‐related hearing loss , 2009, Diabetic Medicine.

[64]  J. E. Hawkins The Role of Vasoconstriction in Noise-Induced Hearing Loss , 1971, The Annals of otology, rhinology, and laryngology.

[65]  A. Nuttall,et al.  ATP-induced cochlear blood flow changes involve the nitric oxide pathway , 1997, Hearing Research.

[66]  A. Nuttall,et al.  The demonstration of nitric oxide in cochlear blood vessels in vivo and in vitro: the role of endothelial nitric oxide in venular permeability , 2002, Hearing Research.

[67]  A. Nuttall,et al.  Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice , 2007, Hearing Research.

[68]  N. Smythe,et al.  Quantification of the stria vascularis and strial capillary areas in quiet-reared young and aged gerbils , 1997, Hearing Research.

[69]  A. Nuttall,et al.  Functional expression of P2X4 receptor in capillary endothelial cells of the cochlear spiral ligament and its role in regulating the capillary diameter. , 2011, American journal of physiology. Heart and circulatory physiology.

[70]  F. Linthicum,et al.  Spiral Ligament and Stria Vascularis Changes in Cochlear Otosclerosis: Effect on Hearing Level , 2004, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[71]  P. Wangemann,et al.  CGRP Receptors in the Gerbil Spiral Modiolar Artery Mediate a Sustained Vasodilation via a Transient cAMP-mediated Ca2+-decrease , 2002, The Journal of Membrane Biology.

[72]  A. Nuttall,et al.  Basal nitric oxide production in regulation of cochlear blood flow , 1994, Hearing Research.

[73]  A. Nuttall,et al.  Autoregulation of cochlear blood flow in guinea pigs. , 1994, The American journal of physiology.

[74]  J. Miller,et al.  Control of inner ear blood flow. , 1988, American journal of otolaryngology.

[75]  M. Sone,et al.  A comparative study of intratympanic steroid and NO synthase inhibitor for treatment of cochlear lateral wall damage due to acute otitis media. , 2003, European journal of pharmacology.

[76]  S. Harkins Effects of age and interstimulus interval on the brainstem auditory evoked potential. , 1981, The International journal of neuroscience.

[77]  Philine Wangemann,et al.  Cochlear blood flow regulation. , 2002, Advances in oto-rhino-laryngology.

[78]  C. L. Willis Glia-Induced Reversible Disruption of Blood–Brain Barrier Integrity and Neuropathological Response of the Neurovascular Unit , 2011, Toxicologic pathology.

[79]  A. Nuttall,et al.  Autoregulation of cochlear blood flow in the hydropic guinea pig , 1995, Hearing Research.

[80]  S. Spicer,et al.  Immunoglobulin deposition in thickened basement membranes of aging strial capillaries , 1997, Hearing Research.

[81]  K. Ohlemiller Mechanisms and genes in human strial presbycusis from animal models , 2009, Brain Research.

[82]  Alfred L. Nuttall,et al.  Disorders of cochlear blood flow , 2003, Brain Research Reviews.

[83]  N. Morel,et al.  Pericyte physiology , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[84]  B. Kellerhals Acoustic trauma and cochlear microcirculation. An experimental and clinical study on pathogenesis and treatment of inner ear lesions after acute noise exposure. , 1972, Advances in oto-rhino-laryngology.

[85]  S. Juhn,et al.  Blood-labyrinth barrier and fluid dynamics of the inner ear. , 2001, The international tinnitus journal.

[86]  R. Park,et al.  Spiral ligament fibrocytes release chemokines in response to otitis media pathogens , 2006, Acta oto-laryngologica.

[87]  A. Nacci,et al.  Hemostatic Alterations in Patients with Acute, Unilateral Vestibular Paresis , 2001, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[88]  A. Salt Regulation of Endolymphatic Fluid Volume , 2001, Annals of the New York Academy of Sciences.

[89]  A. Nuttall,et al.  Co-existence of tyrosine hydroxylase and calcitonin gene-related peptide in cochlear spiral modiolar artery of guinea pigs , 2001, Hearing Research.

[90]  E. Javel,et al.  Effect of stress-related hormones on inner ear fluid homeostasis and function. , 1999, The American journal of otology.

[91]  A Axelsson,et al.  Observations of cochlear microcirculation using intravital microscopy. , 1990, Acta oto-laryngologica.

[92]  S. Juhn,et al.  Labyrinthine barriers and cochlear homeostasis. , 1981, Acta oto-laryngologica.

[93]  S. Komune,et al.  Effects of trimetaphan-induced deliberate hypotension on human cochlear blood flow. , 1998, Acta oto-laryngologica. Supplementum.

[94]  R. A. Schmiedt,et al.  Chronic Reduction of Endocochlear Potential Reduces Auditory Nerve Activity: Further Confirmation of an Animal Model of Metabolic Presbyacusis , 2010, Journal of the Association for Research in Otolaryngology.

[95]  W. Thomas,et al.  Brain macrophages: on the role of pericytes and perivascular cells , 1999, Brain Research Reviews.

[96]  Holger Gerhardt,et al.  Role of pericytes in vascular morphogenesis. , 2005, EXS.

[97]  S. Juhn,et al.  Barrier systems in the inner ear. , 1988, Acta oto-laryngologica. Supplementum.

[98]  F. Scheibe,et al.  Intensity-related changes in cochlear blood flow in the guinea pig during and following acoustic exposure , 2004, European Archives of Oto-Rhino-Laryngology.

[99]  Ruikang K. Wang In vivo volumetric blood flow imaging using optical microangiography at capillary level resolution , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[100]  M. Nakashima,et al.  Effect of prostaglandin E1 on the rat inner ear microvascular thrombosis. , 1997, General pharmacology.

[101]  J M Miller,et al.  Studies of Inner Ear Blood Flow in Animals and Human Beings , 1995, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[102]  Grant R. Gordon,et al.  Brain metabolism dictates the polarity of astrocyte control over arterioles , 2008, Nature.

[103]  Ruikang K. Wang,et al.  Volumetric Imaging of Blood Flow Within Cochlea in Gerbil In Vivo , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[104]  D. Attwell,et al.  Bidirectional control of CNS capillary diameter by pericytes , 2006, Nature.

[105]  K. Kaga,et al.  Development of the blood-labyrinth barrier in the rat , 1998, Hearing Research.

[106]  P. Wangemann,et al.  Osmotic water permeability of capillaries from the isolated spiral ligament: new in-vitro techniques for the study of vascular permeability and diameter , 1996, Hearing Research.

[107]  J M Miller,et al.  Effects of electrical stimulation of the superior cervical ganglion on cochlear blood flow in guinea pig. , 1993, Acta oto-laryngologica.

[108]  J. Ashmore,et al.  The role of potassium recirculation in cochlear amplification , 2009, Current opinion in otolaryngology & head and neck surgery.

[109]  F. Tseng,et al.  Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs , 2005, Hearing Research.

[110]  H. Spoendlin,et al.  Damage of the basilar membrane by acoustic stimulation , 2004, Archives of oto-rhino-laryngology.

[111]  Jochen Schacht,et al.  Sketches of Otohistory Part 7: The Nineteenth-Century Rise of Laryngology , 2005, Audiology and Neurotology.

[112]  A. Nuttall,et al.  Na+/K+-ATPase α1 Identified as an Abundant Protein in the Blood-Labyrinth Barrier That Plays an Essential Role in the Barrier Integrity , 2011, PloS one.

[113]  A. Nuttall,et al.  Nitric oxide distribution and production in the guinea pig cochlea , 2001, Hearing Research.

[114]  J. Schacht,et al.  Kinetics of gentamicin uptake and release in the rat. Comparison of inner ear tissues and fluids with other organs. , 1986, The Journal of clinical investigation.

[115]  P. Thorne,et al.  Modulation of cochlear blood flow by extracellular purines , 1999, Hearing Research.

[116]  M. Lawrence Control mechanisms of inner ear microcirculation. , 1980, American journal of otolaryngology.

[117]  D. Puro,et al.  Topographical heterogeneity of KIR currents in pericyte‐containing microvessels of the rat retina: effect of diabetes , 2006, The Journal of physiology.

[118]  Joe C. Adams,et al.  Immunocytochemical Traits of Type IV Fibrocytes and Their Possible Relations to Cochlear Function and Pathology , 2009, Journal of the Association for Research in Otolaryngology.

[119]  H. Hosoi,et al.  Effects of intravenous administration of prostaglandin E1 and lipo-prostaglandin E1 on cochlear blood flow in guinea pigs , 2002, European Archives of Oto-Rhino-Laryngology.

[120]  A. Nuttall,et al.  Age-related changes in cochlear vascular conductance in mice , 1995, Hearing Research.

[121]  G. McVeigh,et al.  End-organ dysfunction and cardiovascular outcomes: the role of the microcirculation. , 2009, Clinical science.

[122]  W. Arnold,et al.  The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear , 1998, Hearing Research.

[123]  C. D. De Zeeuw,et al.  Endocochlear potential depends on Cl− channels: mechanism underlying deafness in Bartter syndrome IV , 2008, The EMBO journal.

[124]  N. Smythe,et al.  Identification of ClC-2 and CIC-K2 Chloride Channels in Cultured Rat Type IV Spiral Ligament Fibrocytes , 2007, Journal for the Association for Research in Otolaryngology.

[125]  David W. Lin,et al.  Breakdown of Stria Vascularis Blood-Labyrinth Barrier in C3H/lpr Autoimmune Disease Mice , 1997, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[126]  A. Nuttall Cochlear blood flow: measurement techniques. , 1988, American journal of otolaryngology.

[127]  C. Cremers,et al.  Histopathologic features of the temporal bone in usher syndrome type I. , 2000, Archives of otolaryngology--head & neck surgery.

[128]  M. Seidman,et al.  Mechanisms of Alterations in the Microcirculation of the Cochlea , 1999, Annals of the New York Academy of Sciences.

[129]  K. Hirschi,et al.  Pericytes in the microvasculature. , 1996, Cardiovascular research.

[130]  J. Schacht,et al.  Sketches of Otohistory Part 9: Presby[a]cusis , 2005, Audiology and Neurotology.

[131]  J M Miller,et al.  Neuronal regulation of cochlear blood flow in the guinea‐pig. , 1994, The Journal of physiology.

[132]  A. Axelsson Comparative anatomy of cochlear blood vessels. , 1988, American journal of otolaryngology.

[133]  J. Nathans,et al.  Estrogen-related receptor beta/NR3B2 controls epithelial cell fate and endolymph production by the stria vascularis. , 2007, Developmental cell.

[134]  H. Pillsbury,et al.  Student Research Award 1990. Catecholaminergic innervation of the inner ear. , 1990, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[135]  J. Bakker,et al.  The heterogeneity of the microcirculation in critical illness. , 2008, Clinics in chest medicine.

[136]  S. Naganawa,et al.  Imaging analysis in cases with inflammation-induced sensorineural hearing loss , 2009, Acta oto-laryngologica.

[137]  P. Krause,et al.  Prostaglandin E2 at new glance: novel insights in functional diversity offer therapeutic chances. , 2010, The international journal of biochemistry & cell biology.

[138]  T. Nakagawa Roles of prostaglandin E2 in the cochlea , 2011, Hearing Research.

[139]  Xiaorui Shi,et al.  Fibro-Vascular Coupling in the Control of Cochlear Blood Flow , 2011, PloS one.

[140]  A. Nuttall,et al.  The Cochlear Pericytes , 2008, Microcirculation.

[141]  S. Naganawa,et al.  Visualization of a high protein concentration in the cochlea of a patient with a large endolymphatic duct and sac, using three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging. , 2006, The Journal of laryngology and otology.

[142]  Y. Nakai,et al.  Scanning electron microscopy of the microvascular system in the inner ear. , 1986, Scanning electron microscopy.

[143]  K. Ohlemiller,et al.  Divergent Aging Characteristics in CBA/J and CBA/CaJ Mouse Cochleae , 2010, Journal of the Association for Research in Otolaryngology.

[144]  M. Nelson,et al.  Physiological roles and properties of potassium channels in arterial smooth muscle. , 1995, The American journal of physiology.

[145]  A. Ryan,et al.  The early postnatal development of the cochlear vasculature in the gerbil. , 1986, Acta oto-laryngologica.

[146]  D. Stewart,et al.  Review: Molecular pathogenesis of blood–brain barrier breakdown in acute brain injury , 2011, Neuropathology and applied neurobiology.

[147]  A. Nuttall,et al.  Nitric oxide induces hyperpolarization by opening ATP-sensitive K+ channels in guinea pig spiral modiolar artery , 2002, Hearing Research.

[148]  K. Alagramam,et al.  The basic science of Meniere's disease and endolymphatic hydrops , 2005, Current opinion in otolaryngology & head and neck surgery.

[149]  Y. Nakai,et al.  Strial circulation impairment due to acoustic trauma. , 1991, Acta oto-laryngologica.

[150]  P. Wangemann,et al.  Evidence for a Calcium-Sensing Receptor in the Vascular Smooth Muscle Cells of the Spiral Modiolar Artery , 2000, The Journal of Membrane Biology.

[151]  C. Betsholtz,et al.  Pericytes and vascular stability. , 2006, Experimental cell research.

[152]  H. Pillsbury,et al.  Cochlear microcirculation in young and old gerbils. , 1990, Archives of otolaryngology--head & neck surgery.

[153]  A. Nuttall,et al.  Basal nitric oxide production contributes to membrane potential and vasotone regulation of guinea pig in vitro spiral modiolar artery , 2004, Hearing Research.

[154]  G. D. del Zoppo,et al.  Integrin-matrix interactions in the cerebral microvasculature. , 2006, Arteriosclerosis, thrombosis, and vascular biology.

[155]  S. Gatehouse,et al.  Whole blood viscosity and red cell filterability as factors in sensorineural hearing impairment in the elderly. , 1990, Acta oto-laryngologica. Supplementum.

[156]  P. Wangemann,et al.  KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. , 2002, American journal of physiology. Cell physiology.

[157]  吉田 忠雄,et al.  Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging findings and prognosis in sudden sensorineural hearing loss , 2009 .

[158]  Alec N. Salt,et al.  Mechanism of endocochlear potential generation by stria vascularis , 1987 .

[159]  A. Nuttall,et al.  Stellate ganglion drives sympathetic regulation of cochlear blood flow , 1993, Hearing Research.

[160]  K. Ohlemiller,et al.  Strial microvascular pathology and age-associated endocochlear potential decline in NOD congenic mice , 2008, Hearing Research.

[161]  A. Salt,et al.  Mechanisms of endocochlear potential generation by stria vascularis , 1987, The Laryngoscope.

[162]  M. Liberman,et al.  Lateral Wall Histopathology and Endocochlear Potential in the Noise-Damaged Mouse Cochlea , 2003, Journal of the Association for Research in Otolaryngology.

[163]  M. Mancini,et al.  Pericyte coverage is greater in the retinal than in the cerebral capillaries of the rat. , 1987, Investigative ophthalmology & visual science.

[164]  M. Ruckenstein,et al.  Antiphospholipid Inner Ear Syndrome , 2005, The Laryngoscope.

[165]  D. Puro,et al.  Nitric oxide/cGMP-induced inhibition of calcium and chloride currents in retinal pericytes. , 2001, Microvascular research.

[166]  Xiaorui Shi Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells , 2010, Cell and Tissue Research.

[167]  W. Mann,et al.  COX-2 expression in the guinea pig cochlea is partly altered by moderate sound exposure , 2006, Neuroscience Letters.

[168]  Hiroshi Yamamoto,et al.  Response of cochlear blood flow to prostaglandin E1 applied topically to the round window , 2006, Acta oto-laryngologica.

[169]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.

[170]  Holger Gerhardt,et al.  Endothelial-pericyte interactions in angiogenesis , 2003, Cell and Tissue Research.

[171]  B. Olzowy,et al.  Modeling the Measurements of Cochlear Microcirculation and Hearing Function after Loud Noise , 2011, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[172]  R. Gutiérrez,et al.  Microvascular pericytes: a review of their morphological and functional characteristics. , 1991, Histology and histopathology.

[173]  S. Volpato,et al.  Diabetes, Cardiovascular Risk Factors and Idiopathic Sudden Sensorineural Hearing Loss: A Case-Control Study , 2009, Audiology and Neurotology.

[174]  P. Wangemann,et al.  Ca2+-dependence and nifedipine-sensitivity of vascular tone and contractility in the isolated superfused spiral modiolar artery in vitro , 1998, Hearing Research.

[175]  Holger Gerhardt,et al.  Lack of Pericytes Leads to Endothelial Hyperplasia and Abnormal Vascular Morphogenesis , 2001, The Journal of cell biology.

[176]  H. Riechelmann,et al.  Current Trends in Treating Hearing Loss in Elderly People: A Review of the Technology and Treatment Options – A Mini-Review , 2010, Gerontology.

[177]  I. Pyykkö,et al.  Cochlear blood flow measurement in patients with Ménière's disease and other inner ear disorders. , 2001, Acta oto-laryngologica. Supplementum.

[178]  T. Pallone,et al.  Pericyte Regulation of Renal Medullary Blood Flow , 2001, Nephron Experimental Nephrology.

[179]  S. Spicer,et al.  Increased laminin deposition in capillaries of the stria vascularis of quiet-aged gerbils , 1997, Hearing Research.

[180]  Robert D Frisina,et al.  Age‐related Hearing Loss , 2009, Annals of the New York Academy of Sciences.

[181]  W. Lee-Kwon,et al.  Vasa recta pericytes express a strong inward rectifier K+ conductance. , 2006, American journal of physiology. Regulatory, integrative and comparative physiology.

[182]  H. Kitano,et al.  Studies of Cochlear Blood Flow in Guinea Pigs with Endolymphatic Hydrops , 1998, ORL.

[183]  A Axelsson,et al.  The vascular anatomy of the cochlea in the guinea pig and in man. , 1968, Acta oto-laryngologica.

[184]  A. Fetoni,et al.  Autoimmunity in Sudden Sensorineural Hearing Loss: Possible Role of Anti-endothelial Cell Autoantibodies , 2002, Acta oto-laryngologica. Supplementum.

[185]  J. Schacht,et al.  8-Iso-Prostaglandin F2α, a Product of Noise Exposure, Reduces Inner Ear Blood Flow , 2003, Audiology and Neurotology.

[186]  Weilin Zhou,et al.  Brain Endothelial Hemostasis Regulation by Pericytes , 2006, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[187]  A. Nuttall,et al.  Hydrops-Induced Changes in Cochlear Blood Flow , 1995, The Annals of otology, rhinology, and laryngology.

[188]  須小 毅 Classification and culture of spiral ligament fibrocytes from mice , 2000 .

[189]  T. Nakashima,et al.  Development and regression of cochlear blood vessels in fetal and newborn mice , 2000, Hearing Research.

[190]  Alfred L. Nuttall,et al.  Sound-Induced Cochlear Ischemia/Hypoxia as a Mechanism of Hearing Loss. , 1999, Noise & health.

[191]  P. Vanhoutte,et al.  Endothelium-derived hyperpolarizing factor. , 1996, Clinical and experimental pharmacology & physiology.

[192]  P. Vanhoutte,et al.  K+ Channels in Cultured Bovine Retinal Pericytes: Effects of &bgr;‐Adrenergic Stimulation , 2003, Journal of cardiovascular pharmacology.

[193]  Hannes Maier,et al.  Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes , 2008, Development.

[194]  J. Antel,et al.  Glial cell influence on the human blood‐brain barrier , 2001, Glia.

[195]  T. Nakashima Autoregulation of cochlear blood flow. , 1999, Nagoya journal of medical science.

[196]  M. Sakagami,et al.  Fine structure and permeability of capillaries in the stria vascularis and spiral ligament of the inner ear of the guinea pig , 2004, Cell and Tissue Research.

[197]  G. Burnstock,et al.  Neural basis for regulation of cochlear blood flow: Peptidergic and adrenergic innervation of the spiral modiolar artery of the guinea pig , 1990, Hearing Research.

[198]  P. Wangemann,et al.  Endothelin-A receptors mediate vasoconstriction of capillaries in the spiral ligament , 1997, Hearing Research.

[199]  J. Lawrenson,et al.  Pericytes: Cell Biology and Pathology , 2001, Cells Tissues Organs.

[200]  W. Arnold,et al.  Successful Treatment of Noise‐Induced Cochlear Ischemia, Hypoxia, and Hearing Loss , 1999, Annals of the New York Academy of Sciences.

[201]  C. Pournaras,et al.  Lactate-induced retinal arteriolar vasodilation implicates neuronal nitric oxide synthesis in minipigs. , 2008, Investigative ophthalmology & visual science.

[202]  H. Pillsbury,et al.  Catecholaminergic Innervation of the Inner Ear , 1990 .

[203]  M. Seidman,et al.  Age-related differences in cochlear microcirculation and auditory brain stem response. , 1996, Archives of otolaryngology--head & neck surgery.

[204]  Philine Wangemann,et al.  K+ cycling and the endocochlear potential , 2002, Hearing Research.

[205]  Y. Nakai,et al.  Local substances regulating cochlear blood flow. , 1998, Acta oto-laryngologica. Supplementum.