Linear continuations

We present a functional interpretation of classical linear logic based on the concept of linear continuations. Unlike their non-linear counterparts, such continuations lead to a model of control that does not inherently impose any particular evaluation strategy. Instead, such additional structure is expressed by admitting closely controlled copying and discarding of continuations. We also emphasize the importance of classicality in obtaining computationally appealing categorical models of linear logic and propose a simple “coreflective subcategory” interpretation of the modality “!”.

[1]  Mitchell Wand,et al.  Continuation-Based Multiprocessing , 1980, High. Order Symb. Comput..

[2]  Narciso Martí-Oliet,et al.  From Petri nets to linear logic , 1989, Mathematical Structures in Computer Science.

[3]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[4]  R. A. G. Seely,et al.  Linear Logic, -Autonomous Categories and Cofree Coalgebras , 1989 .

[5]  Andrew W. Appel,et al.  Continuation-passing, closure-passing style , 1989, POPL '89.

[6]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[7]  Axel Poigné,et al.  A Note on Inconsistencies Caused by Fixpoints in a Cartesian Closed Category , 1990, Theor. Comput. Sci..

[8]  Jean-Yves Girard,et al.  Linear Logic and Lazy Computation , 1987, TAPSOFT, Vol.2.

[9]  Shin-ya Nishizaki Programs with Continuations and Linear Logic , 1991, TACS.

[10]  Matthias Felleisen,et al.  A Syntactic Theory of Sequential Control , 1987, Theor. Comput. Sci..

[11]  Jr. Guy L. Steele,et al.  Rabbit: A Compiler for Scheme , 1978 .

[12]  Yves Lafont The Linear Abstract Machine (Corrigenda) , 1988, Theor. Comput. Sci..

[13]  D. H. Bartley,et al.  Revised4 report on the algorithmic language scheme , 1991, LIPO.

[14]  Philip Wadler,et al.  Linear Types can Change the World! , 1990, Programming Concepts and Methods.

[15]  Olin Shivers The semantics of Scheme control-flow analysis , 1991 .

[16]  Andrzej Filinski Declarative Continuations: an Investigation of Duality in Programming Language Semantics , 1989, Category Theory and Computer Science.

[17]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[18]  Robert Harper,et al.  Typing first-class continuations in ML , 1991, POPL '91.

[19]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[20]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[21]  Chetan R. Murthy An evaluation semantics for classical proofs , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[22]  William D. Clinger,et al.  Revised3 report on the algorithmic language scheme , 1986, SIGP.

[23]  Olivier Danvy,et al.  Abstracting control , 1990, LISP and Functional Programming.

[24]  S. Lane Categories for the Working Mathematician , 1971 .

[25]  Yves Lafont,et al.  The Linear Abstract Machine , 1988, Theor. Comput. Sci..

[26]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.