A computational approach to soliton solutions of the Kadomtsev-Petviashvili equation
暂无分享,去创建一个
[1] L. Debnath. Nonlinear Partial Differential Equations for Scientists and Engineers , 1997 .
[2] F. Alberto Grünbaum. The Kadomtsev-Petviashvili equation: An alternative approach to the “rank two” solutions of Krichever and Novikov , 1989 .
[3] A. Wazwaz. A First Course in Integral Equations , 1997 .
[4] Jianhong Wu,et al. Numerical steady state and Hopf bifurcation analysis on the diffusive Nicholson's blowflies equation , 2000, Appl. Math. Comput..
[5] Athanassios G. Bratsos,et al. An explicit finite-difference scheme for the solution of the kadomtsev-petviashvili equation , 1998, Int. J. Comput. Math..
[6] Sergei Petrovich Novikov,et al. HOLOMORPHIC BUNDLES OVER ALGEBRAIC CURVES AND NON-LINEAR EQUATIONS , 1980 .
[7] George Adomian,et al. Solving Frontier Problems of Physics: The Decomposition Method , 1993 .
[8] Abdul-Majid Wazwaz,et al. A new algorithm for calculating adomian polynomials for nonlinear operators , 2000, Appl. Math. Comput..
[9] G. A. Latham. Solutions of the KP equation associated to rank-three commuting differential operators over a singular elliptic curve , 1990 .
[10] N. C. Freeman,et al. Soliton Interactions in Two Dimensions , 1980 .
[11] G. Adomian. A review of the decomposition method in applied mathematics , 1988 .
[12] N. C. Freeman. Soliton Solutions of Non-linear Evolution Equations , 1984 .
[13] G. A. Baker. Essentials of Padé approximants , 1975 .
[14] R. Hirota. Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .