Commutation for Irregular Subdivision
暂无分享,去创建一个
[1] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[2] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[3] C. Micchelli,et al. Stationary Subdivision , 1991 .
[4] Pierre Gilles Lemarié-Rieusset. Analyses multi-résolutions non orthogonales, commutation entre projecteurs et derivation et ondelettes vecteurs à divergence nuIIe , 1992 .
[5] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[6] Wim Sweldens,et al. The Construction and Application of Wavelets in Numerical Analysis , 1995 .
[7] I. Daubechies,et al. Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .
[8] I. Daubechies,et al. Regularity of Irregular Subdivision , 1999 .
[9] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[10] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[11] C. Micchelli,et al. Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces , 1993 .
[12] R. Qu,et al. A Subdivision Algorithm For Non—Uniform B—Splines , 1992 .
[13] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[14] Nira Dyn,et al. Analysis of uniform binary subdivision schemes for curve design , 1991 .
[15] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[16] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[17] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[18] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[19] C. R. Deboor,et al. A practical guide to splines , 1978 .
[20] J. Kahane,et al. Fourier series and wavelets , 1995 .