Review of Functional Data Analysis

With the advance of modern technology, more and more data are being recorded continuously during a time interval or intermittently at several discrete time points. They are both examples of "functional data", which have become a prevailing type of data. Functional Data Analysis (FDA) encompasses the statistical methodology for such data. Broadly interpreted, FDA deals with the analysis and theory of data that are in the form of functions. This paper provides an overview of FDA, starting with simple statistical notions such as mean and covariance functions, then covering some core techniques, the most popular of which is Functional Principal Component Analysis (FPCA). FPCA is an important dimension reduction tool and in sparse data situations can be used to impute functional data that are sparsely observed. Other dimension reduction approaches are also discussed. In addition, we review another core technique, functional linear regression, as well as clustering and classification of functional data. Beyond linear and single or multiple index methods we touch upon a few nonlinear approaches that are promising for certain applications. They include additive and other nonlinear functional regression models, such as time warping, manifold learning, and dynamic modeling with empirical differential equations. The paper concludes with a brief discussion of future directions.

[1]  Lijian Yang,et al.  Simultaneous inference for the mean function based on dense functional data , 2012, Journal of nonparametric statistics.

[2]  Jane-Ling Wang,et al.  Stringing High-Dimensional Data for Functional Analysis , 2011 .

[3]  Jie Peng,et al.  Time-warped growth processes, with applications to the modeling of boom-bust cycles in house prices , 2014, 1411.5497.

[4]  R. D. Cook,et al.  NECESSARY AND SUFFICIENT CONDITIONS FOR CONSISTENCY OF A METHOD FOR SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2010 .

[5]  Wolfgang Härdle,et al.  The Art of Semiparametrics , 2006 .

[6]  H. Müller,et al.  Dynamical Correlation for Multivariate Longitudinal Data , 2005 .

[7]  Ci-Ren Jiang,et al.  Smoothing dynamic positron emission tomography time courses using functional principal components , 2009, NeuroImage.

[8]  David Degras Asymptotics for the nonparametric estimation of the mean function of a random process , 2008 .

[9]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[10]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[11]  Nadine Hilgert,et al.  Minimax adaptive tests for the Functional Linear model , 2012, 1206.1194.

[12]  Fang Yao,et al.  Continuously additive models for nonlinear functional regression , 2013 .

[13]  Jeng-Min Chiou,et al.  Dynamical functional prediction and classification, with application to traffic flow prediction , 2012, 1301.2399.

[14]  Jianhua Z. Huang,et al.  Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data , 2003 .

[15]  J. Ramsay,et al.  Combining Registration and Fitting for Functional Models , 2008 .

[16]  H. Müller,et al.  Pairwise curve synchronization for functional data , 2008 .

[17]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[18]  Pascal Sarda,et al.  Linear Regression Models for Functional Data , 2006 .

[19]  Ana Arribas-Gil,et al.  Pairwise dynamic time warping for event data , 2012, Comput. Stat. Data Anal..

[20]  Abdelhak. Zoglat,et al.  Analysis of variance for functional data. , 1994 .

[21]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[22]  E. A. Sylvestre,et al.  Principal modes of variation for processes with continuous sample curves , 1986 .

[23]  T. Gasser,et al.  Convergence and consistency results for self-modeling nonlinear regression , 1988 .

[24]  Richard A. Davis,et al.  On Some Global Measures of the Deviations of Density Function Estimates , 2011 .

[25]  J. Rice,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .

[26]  Julien Jacques,et al.  Funclust: A curves clustering method using functional random variables density approximation , 2013, Neurocomputing.

[27]  Damla Şentürk,et al.  Generalized varying coefficient models for longitudinal data , 2008 .

[28]  Sadanori Konishi,et al.  Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition , 2011, J. Classif..

[29]  M. Genton,et al.  Functional Boxplots , 2011 .

[30]  Ciprian M. Crainiceanu,et al.  Nonparametric Regression Methods for Longitudinal Data Analysis. Mixed-effects Modeling Approaches , 2007 .

[31]  Nicolas Verzelen,et al.  Inferring stochastic dynamics from functional data , 2012 .

[32]  G. Boente,et al.  S-Estimators for Functional Principal Component Analysis , 2015 .

[33]  D. Gervini Robust functional estimation using the median and spherical principal components , 2008 .

[34]  B. Silverman,et al.  Canonical correlation analysis when the data are curves. , 1993 .

[35]  Colin O. Wu,et al.  Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.

[36]  Jane-ling Wang Nonparametric Regression Analysis of Longitudinal Data , 2005 .

[37]  P. Sarda,et al.  Functional linear model , 1999 .

[38]  Jeffrey S. Morris Functional Regression , 2014, 1406.4068.

[39]  Korbinian Strimmer INFERRING GENE DEPENDENCY NETWORKS FROM GENOMIC LONGITUDINAL DATA : A FUNCTIONAL DATA APPROACH , 2006 .

[40]  Jie Peng,et al.  Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions , 2008, 0805.0463.

[41]  Peter Hall,et al.  A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.

[42]  S. Chiba,et al.  Dynamic programming algorithm optimization for spoken word recognition , 1978 .

[43]  J. Ramsay,et al.  The historical functional linear model , 2003 .

[44]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[45]  Robert E. Weiss,et al.  An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves , 1996 .

[46]  C. Abraham,et al.  Unsupervised Curve Clustering using B‐Splines , 2003 .

[47]  M. Wainwright,et al.  Sampled forms of functional PCA in reproducing kernel Hilbert spaces , 2011, 1109.3336.

[48]  J. A. D. Aston,et al.  Unifying Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-Effects Modeling of Mandarin Chinese , 2013, Journal of the American Statistical Association.

[49]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[50]  Gerhard Tutz,et al.  Clustering in linear‐mixed models with a group fused lasso penalty , 2014, Biometrical journal. Biometrische Zeitschrift.

[51]  John A. Rice,et al.  FUNCTIONAL AND LONGITUDINAL DATA ANALYSIS: PERSPECTIVES ON SMOOTHING , 2004 .

[52]  Jane-ling Wang,et al.  Functional linear regression analysis for longitudinal data , 2005, math/0603132.

[53]  A. Laksaci,et al.  Robust nonparametric estimation for functional data , 2008 .

[54]  B. Silverman,et al.  Smoothed functional principal components analysis by choice of norm , 1996 .

[55]  John A. Rice,et al.  Displaying the important features of large collections of similar curves , 1992 .

[56]  J. Ramsay,et al.  Curve registration , 2018, Oxford Handbooks Online.

[57]  David E. Tyler,et al.  Robust functional principal components: A projection-pursuit approach , 2011, 1203.2027.

[58]  Ci-Ren Jiang,et al.  Functional single index models for longitudinal data , 2011, 1103.1726.

[59]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[60]  Ashish Sood,et al.  Functional Regression: A New Model for Predicting Market Penetration of New Products , 2009, Mark. Sci..

[61]  Gareth M. James Generalized linear models with functional predictors , 2002 .

[62]  Wolfgang Jank,et al.  FUNCTIONAL RESPONSE ADDITIVE MODEL ESTIMATION WITH ONLINE VIRTUAL STOCK MARKETS , 2014, 1502.00818.

[63]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[64]  T. Hsing,et al.  Canonical correlation for stochastic processes , 2008 .

[65]  Jeng-Min Chiou,et al.  Identifying cluster number for subspace projected functional data clustering , 2011, Comput. Stat. Data Anal..

[66]  H. Cardot,et al.  Estimation in generalized linear models for functional data via penalized likelihood , 2005 .

[67]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[68]  Dong Chen,et al.  Nonlinear manifold representations for functional data , 2012, 1205.6040.

[69]  R. Carroll,et al.  Profile‐kernel versus backfitting in the partially linear models for longitudinal/clustered data , 2004 .

[70]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[71]  H. Müller,et al.  Nonparametric Regression Analysis of Growth Curves , 1984 .

[72]  M. Yuan,et al.  Optimal estimation of the mean function based on discretely sampled functional data: Phase transition , 2011, 1202.5134.

[73]  Raymond J. Carroll,et al.  A SIMULTANEOUS CONFIDENCE BAND FOR SPARSE LONGITUDINAL REGRESSION , 2012 .

[74]  Peter Hall,et al.  Assessing the finite dimensionality of functional data , 2006 .

[75]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[76]  Victor M. Panaretos,et al.  Dispersion operators and resistant second-order functional data analysis , 2012 .

[77]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[78]  Rob J Hyndman,et al.  Rainbow Plots, Bagplots, and Boxplots for Functional Data , 2010 .

[79]  Chung Chang,et al.  Functional data classification: a wavelet approach , 2014, Computational Statistics.

[80]  David L. Donoho,et al.  Image Manifolds which are Isometric to Euclidean Space , 2005, Journal of Mathematical Imaging and Vision.

[81]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[82]  Fang Yao,et al.  Partially functional linear regression in high dimensions , 2016 .

[83]  Jing Wang,et al.  POLYNOMIAL SPLINE CONFIDENCE BANDS FOR REGRESSION CURVES , 2009 .

[84]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[85]  R. Fraiman,et al.  Kernel-based functional principal components ( , 2000 .

[86]  Jane-Ling Wang,et al.  Functional quasi‐likelihood regression models with smooth random effects , 2003 .

[87]  Debashis Paul,et al.  CONSISTENCY OF RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS OF PRINCIPAL COMPONENTS , 2008, 0805.0465.

[88]  Marina Vannucci,et al.  A Bayesian Hierarchical Model for Classification with Selection of Functional Predictors , 2010, Biometrics.

[89]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[90]  A. Gelfand,et al.  Hybrid Dirichlet mixture models for functional data , 2009 .

[91]  D. Gervini Warped functional regression , 2012, 1203.1975.

[92]  Hsin-Cheng Huang,et al.  Fixed and random effects selection in nonparametric additive mixed models , 2012 .

[93]  Hulin Wu,et al.  Nonparametric regression methods for longitudinal data analysis , 2006 .

[94]  J. Ramsay When the data are functions , 1982 .

[95]  Mariela Sued,et al.  Testing the Equality of Covariance Operators , 2011 .

[96]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[97]  Victor M. Panaretos,et al.  Fourier analysis of stationary time series in function space , 2013, 1305.2073.

[98]  Sadanori Konishi,et al.  Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application , 2010, J. Classif..

[99]  Haibo Zhou,et al.  Two-stage efficient estimation of longitudinal nonparametric additive models , 2007 .

[100]  Bani K. Mallick,et al.  Bayesian Curve Classification Using Wavelets , 2007 .

[101]  Ulrich Stadtmüller,et al.  Functional singular component analysis , 2011 .

[102]  Hans-Georg Muller,et al.  Empirical dynamics for longitudinal data , 2010, 1211.2630.

[103]  Catherine A. Sugar,et al.  Principal component models for sparse functional data , 1999 .

[104]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[105]  Jeng-Min Chiou,et al.  Functional clustering and identifying substructures of longitudinal data , 2007 .

[106]  María Dolores Ruiz-Medina,et al.  Wavelet-RKHS-based functional statistical classification , 2012, Adv. Data Anal. Classif..

[107]  Hans-Georg Muller,et al.  Functional linear regression via canonical analysis , 2010, 1102.5212.

[108]  H. Müller,et al.  Functional Convex Averaging and Synchronization for Time-Warped Random Curves , 2004 .

[109]  E. A. Sylvestre,et al.  Self Modeling Curve Resolution , 1971 .

[110]  Piotr Kokoszka,et al.  A test of significance in functional quadratic regression , 2013 .

[111]  C. R. Rao,et al.  Some statistical methods for comparison of growth curves. , 1958 .

[112]  Nancy E. Heckman,et al.  Spline Smoothing in a Partly Linear Model , 1986 .

[113]  M. Pensky,et al.  Clustering time-course microarray data using functional Bayesian infinite mixture model , 2012 .

[114]  J. Ramsay,et al.  Some Tools for Functional Data Analysis , 1991 .

[115]  Arnab Maity,et al.  Nonparametric additive regression for repeatedly measured data , 2009 .

[116]  John H. Maddocks,et al.  Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles , 2010 .

[117]  J. Vaupel,et al.  Reproductive potential predicts longevity of female Mediterranean fruitflies , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[118]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[119]  Jane-Ling Wang,et al.  From sparse to dense functional data and beyond , 2016 .

[120]  Gareth M. James,et al.  Functional linear discriminant analysis for irregularly sampled curves , 2001 .

[121]  D. Degras,et al.  Simultaneous confidence bands for nonparametric regression with functional data , 2009, 0908.1980.

[122]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[123]  X. Lin,et al.  Inference in generalized additive mixed modelsby using smoothing splines , 1999 .

[124]  Hans-Georg Müller,et al.  Functional modeling of longitudinal data , 2008 .

[125]  U. Grenander Stochastic processes and statistical inference , 1950 .

[126]  Luis Angel García-Escudero,et al.  A Proposal for Robust Curve Clustering , 2005, J. Classif..

[127]  J. Ramsay,et al.  Principal components analysis of sampled functions , 1986 .

[128]  Hongtu Zhu,et al.  Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities , 2013, Journal of the American Statistical Association.

[129]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[130]  Frédéric Ferraty,et al.  Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..

[131]  H. Müller,et al.  Time ordering of gene coexpression. , 2006, Biostatistics.

[132]  Suojin Wang,et al.  Generalized empirical likelihood methods for analyzing longitudinal data , 2010, Biometrika.

[133]  Aurore Delaigle,et al.  Classification Using Censored Functional Data , 2013 .

[134]  Tosio Kato Perturbation theory for linear operators , 1966 .

[135]  Byeong U. Park,et al.  Time-Varying Additive Models for Longitudinal Data , 2013 .

[136]  Hans-Georg Müller,et al.  Functional embedding for the classification of gene expression profiles , 2010, Bioinform..

[137]  Hans-Georg Müller,et al.  Estimating Derivatives for Samples of Sparsely Observed Functions, With Application to Online Auction Dynamics , 2009 .

[138]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[139]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[140]  C. J. Stone,et al.  Additive Regression and Other Nonparametric Models , 1985 .

[141]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[142]  Kai F. Yu,et al.  Nonparametric varying-coefficient models for the analysis of longitudinal data , 2002 .

[143]  John Hinde,et al.  Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data , 2014, Comput. Stat. Data Anal..

[144]  Wei Wu,et al.  Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..

[145]  M. Kirkpatrick,et al.  A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters , 1989, Journal of mathematical biology.

[146]  James O. Ramsay,et al.  Applied Functional Data Analysis: Methods and Case Studies , 2002 .

[147]  P. Bickel,et al.  Local polynomial regression on unknown manifolds , 2007, 0708.0983.

[148]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .

[149]  H. Müller,et al.  Functional quadratic regression , 2010 .

[150]  Jeffrey S. Morris,et al.  Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models , 2012, Biometrics.

[151]  Lajos Horv'ath,et al.  A test of significance in functional quadratic regression , 2011, 1105.0014.

[152]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[153]  L. Ferré,et al.  Smoothed Functional Inverse Regression , 2005 .

[154]  Jane-Ling Wang,et al.  Functional canonical analysis for square integrable stochastic processes , 2003 .

[155]  Ingrid Van Keilegom,et al.  Two-sample tests in functional data analysis starting from discrete data , 2007 .

[156]  Jeng-Min Chiou,et al.  Inferring gene expression dynamics via functional regression analysis , 2007, BMC Bioinformatics.

[157]  F. Yao,et al.  Penalized spline models for functional principal component analysis , 2006 .

[158]  A. Gelfand,et al.  Bayesian Nonparametric Functional Data Analysis Through Density Estimation. , 2009, Biometrika.

[159]  G. He,et al.  EXTENDING CORRELATION AND REGRESSION FROM MULTIVARIATE TO FUNCTIONAL DATA , 2000 .

[160]  A. Qu,et al.  Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates , 2014, 1405.6030.

[161]  Frédéric Ferraty,et al.  Most-predictive design points for functional data predictors , 2010 .

[162]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[163]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[164]  T. Hsing,et al.  Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .

[165]  Vincent N. LaRiccia,et al.  Convergence rates for smoothing spline estimators in varying coefficient models , 2010 .

[166]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[167]  Wei Yu,et al.  Inverse regression for longitudinal data , 2014, 1405.6017.

[168]  Pai-Ling Li,et al.  Correlation-Based Functional Clustering via Subspace Projection , 2008 .

[169]  Anuj Srivastava,et al.  Analysis of spike train data: Alignment and comparisons using the extended Fisher-Rao metric , 2014 .

[170]  Yuko Araki,et al.  Functional Logistic Discrimination Via Regularized Basis Expansions , 2009 .

[171]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[172]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[173]  Mathew W. McLean,et al.  Journal of Computational and Graphical Statistics Functional Generalized Additive Models Functional Generalized Additive Models Accepted Manuscript Accepted Manuscript , 2022 .

[174]  Fang Yao,et al.  Functional Additive Models , 2008 .

[175]  K. J. Utikal,et al.  Inference for Density Families Using Functional Principal Component Analysis , 2001 .

[176]  Sd Pezzulli,et al.  Some properties of smoothed principal components analysis for functional data , 1993 .

[177]  Jianqing Fan,et al.  Test of Significance When Data Are Curves , 1998 .

[178]  Zhen Zhang,et al.  Functional density synchronization , 2011, Comput. Stat. Data Anal..

[179]  Jing Wang,et al.  Efficient and fast spline-backfitted kernel smoothing of additive models , 2009 .

[180]  P. Hall,et al.  Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.

[181]  Hervé Cardot,et al.  Conditional Functional Principal Components Analysis , 2007 .

[182]  Ker-Chau Li,et al.  Slicing Regression: A Link-Free Regression Method , 1991 .

[183]  T. Hsing,et al.  Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data , 2010, 1211.2137.

[184]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[185]  H. Müller,et al.  Modeling Hazard Rates as Functional Data for the Analysis of Cohort Lifetables and Mortality Forecasting , 2009 .

[186]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[187]  P. Hall,et al.  Defining probability density for a distribution of random functions , 2010, 1002.4931.

[188]  Pascal Sarda,et al.  Factor models and variable selection in high-dimensional regression analysis , 2011 .

[189]  Ricardo Fraiman,et al.  An anova test for functional data , 2004, Comput. Stat. Data Anal..

[190]  Xin Zhao,et al.  The functional data analysis view of longitudinal data , 2004 .

[191]  Damla Şentürk,et al.  Covariate Adjusted Correlation Analysis via Varying Coefficient Models , 2005 .

[192]  Harrison H. Zhou,et al.  Estimation in Functional Regression for General Exponential Families , 2012 .

[193]  Hans-Georg Ller,et al.  Functional Modelling and Classification of Longitudinal Data. , 2005 .

[194]  Spencer Graves,et al.  Functional Data Analysis with R and MATLAB , 2009 .

[195]  Ci-Ren Jiang,et al.  COVARIATE ADJUSTED FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS FOR LONGITUDINAL DATA , 2010, 1003.0261.

[196]  Gerhard Tutz,et al.  Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm , 2013 .

[197]  P. Hall,et al.  Achieving near perfect classification for functional data , 2012 .

[198]  Geert Molenberghs,et al.  Longitudinal Data Analysis. Handbooks of Modern Statistical Methods , 2009 .

[199]  Bernard W. Silverman,et al.  Incorporating parametric effects into functional principal components analysis , 1995 .

[200]  Hans-Georg Müller,et al.  Reproduction is adapted to survival characteristics across geographically isolated medfly populations , 2009, Proceedings of the Royal Society B: Biological Sciences.

[201]  Saad T. Bakir,et al.  Nonparametric Regression and Spline Smoothing , 2000, Technometrics.

[202]  M Giacofci,et al.  Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension , 2011, Biometrics.

[203]  Hans-Georg Müller Functional Data Analysis. , 2011 .

[204]  T. Gasser,et al.  Searching for Structure in Curve Samples , 1995 .

[205]  L. Wasserman,et al.  CATS , 2005 .

[206]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[207]  T. Gasser,et al.  Alignment of curves by dynamic time warping , 1997 .

[208]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[209]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[210]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[211]  Julien Jacques,et al.  Model-based clustering for multivariate functional data , 2013, Comput. Stat. Data Anal..

[212]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[213]  H. Cardot Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .

[214]  Jeng-Min Chiou,et al.  Diagnostics for functional regression via residual processes , 2007, Comput. Stat. Data Anal..

[215]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.