Review of Functional Data Analysis
暂无分享,去创建一个
Jane-Ling Wang | Jeng-Min Chiou | Hans-Georg Mueller | Jane-ling Wang | Jeng-Min Chiou | Hans-Georg Mueller
[1] Lijian Yang,et al. Simultaneous inference for the mean function based on dense functional data , 2012, Journal of nonparametric statistics.
[2] Jane-Ling Wang,et al. Stringing High-Dimensional Data for Functional Analysis , 2011 .
[3] Jie Peng,et al. Time-warped growth processes, with applications to the modeling of boom-bust cycles in house prices , 2014, 1411.5497.
[4] R. D. Cook,et al. NECESSARY AND SUFFICIENT CONDITIONS FOR CONSISTENCY OF A METHOD FOR SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2010 .
[5] Wolfgang Härdle,et al. The Art of Semiparametrics , 2006 .
[6] H. Müller,et al. Dynamical Correlation for Multivariate Longitudinal Data , 2005 .
[7] Ci-Ren Jiang,et al. Smoothing dynamic positron emission tomography time courses using functional principal components , 2009, NeuroImage.
[8] David Degras. Asymptotics for the nonparametric estimation of the mean function of a random process , 2008 .
[9] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[10] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[11] Nadine Hilgert,et al. Minimax adaptive tests for the Functional Linear model , 2012, 1206.1194.
[12] Fang Yao,et al. Continuously additive models for nonlinear functional regression , 2013 .
[13] Jeng-Min Chiou,et al. Dynamical functional prediction and classification, with application to traffic flow prediction , 2012, 1301.2399.
[14] Jianhua Z. Huang,et al. Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data , 2003 .
[15] J. Ramsay,et al. Combining Registration and Fitting for Functional Models , 2008 .
[16] H. Müller,et al. Pairwise curve synchronization for functional data , 2008 .
[17] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[18] Pascal Sarda,et al. Linear Regression Models for Functional Data , 2006 .
[19] Ana Arribas-Gil,et al. Pairwise dynamic time warping for event data , 2012, Comput. Stat. Data Anal..
[20] Abdelhak. Zoglat,et al. Analysis of variance for functional data. , 1994 .
[21] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[22] E. A. Sylvestre,et al. Principal modes of variation for processes with continuous sample curves , 1986 .
[23] T. Gasser,et al. Convergence and consistency results for self-modeling nonlinear regression , 1988 .
[24] Richard A. Davis,et al. On Some Global Measures of the Deviations of Density Function Estimates , 2011 .
[25] J. Rice,et al. Smoothing spline models for the analysis of nested and crossed samples of curves , 1998 .
[26] Julien Jacques,et al. Funclust: A curves clustering method using functional random variables density approximation , 2013, Neurocomputing.
[27] Damla Şentürk,et al. Generalized varying coefficient models for longitudinal data , 2008 .
[28] Sadanori Konishi,et al. Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition , 2011, J. Classif..
[29] M. Genton,et al. Functional Boxplots , 2011 .
[30] Ciprian M. Crainiceanu,et al. Nonparametric Regression Methods for Longitudinal Data Analysis. Mixed-effects Modeling Approaches , 2007 .
[31] Nicolas Verzelen,et al. Inferring stochastic dynamics from functional data , 2012 .
[32] G. Boente,et al. S-Estimators for Functional Principal Component Analysis , 2015 .
[33] D. Gervini. Robust functional estimation using the median and spherical principal components , 2008 .
[34] B. Silverman,et al. Canonical correlation analysis when the data are curves. , 1993 .
[35] Colin O. Wu,et al. Nonparametric Mixed Effects Models for Unequally Sampled Noisy Curves , 2001, Biometrics.
[36] Jane-ling Wang. Nonparametric Regression Analysis of Longitudinal Data , 2005 .
[37] P. Sarda,et al. Functional linear model , 1999 .
[38] Jeffrey S. Morris. Functional Regression , 2014, 1406.4068.
[39] Korbinian Strimmer. INFERRING GENE DEPENDENCY NETWORKS FROM GENOMIC LONGITUDINAL DATA : A FUNCTIONAL DATA APPROACH , 2006 .
[40] Jie Peng,et al. Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions , 2008, 0805.0463.
[41] Peter Hall,et al. A Functional Data—Analytic Approach to Signal Discrimination , 2001, Technometrics.
[42] S. Chiba,et al. Dynamic programming algorithm optimization for spoken word recognition , 1978 .
[43] J. Ramsay,et al. The historical functional linear model , 2003 .
[44] Gareth M. James,et al. Functional Adaptive Model Estimation , 2005 .
[45] Robert E. Weiss,et al. An Analysis of Paediatric Cd4 Counts for Acquired Immune Deficiency Syndrome Using Flexible Random Curves , 1996 .
[46] C. Abraham,et al. Unsupervised Curve Clustering using B‐Splines , 2003 .
[47] M. Wainwright,et al. Sampled forms of functional PCA in reproducing kernel Hilbert spaces , 2011, 1109.3336.
[48] J. A. D. Aston,et al. Unifying Amplitude and Phase Analysis: A Compositional Data Approach to Functional Multivariate Mixed-Effects Modeling of Mandarin Chinese , 2013, Journal of the American Statistical Association.
[49] Li Ping Yang,et al. Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .
[50] Gerhard Tutz,et al. Clustering in linear‐mixed models with a group fused lasso penalty , 2014, Biometrical journal. Biometrische Zeitschrift.
[51] John A. Rice,et al. FUNCTIONAL AND LONGITUDINAL DATA ANALYSIS: PERSPECTIVES ON SMOOTHING , 2004 .
[52] Jane-ling Wang,et al. Functional linear regression analysis for longitudinal data , 2005, math/0603132.
[53] A. Laksaci,et al. Robust nonparametric estimation for functional data , 2008 .
[54] B. Silverman,et al. Smoothed functional principal components analysis by choice of norm , 1996 .
[55] John A. Rice,et al. Displaying the important features of large collections of similar curves , 1992 .
[56] J. Ramsay,et al. Curve registration , 2018, Oxford Handbooks Online.
[57] David E. Tyler,et al. Robust functional principal components: A projection-pursuit approach , 2011, 1203.2027.
[58] Ci-Ren Jiang,et al. Functional single index models for longitudinal data , 2011, 1103.1726.
[59] H. Tong,et al. Article: 2 , 2002, European Financial Services Law.
[60] Ashish Sood,et al. Functional Regression: A New Model for Predicting Market Penetration of New Products , 2009, Mark. Sci..
[61] Gareth M. James. Generalized linear models with functional predictors , 2002 .
[62] Wolfgang Jank,et al. FUNCTIONAL RESPONSE ADDITIVE MODEL ESTIMATION WITH ONLINE VIRTUAL STOCK MARKETS , 2014, 1502.00818.
[63] Jianhua Z. Huang,et al. Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .
[64] T. Hsing,et al. Canonical correlation for stochastic processes , 2008 .
[65] Jeng-Min Chiou,et al. Identifying cluster number for subspace projected functional data clustering , 2011, Comput. Stat. Data Anal..
[66] H. Cardot,et al. Estimation in generalized linear models for functional data via penalized likelihood , 2005 .
[67] Chin-Tsang Chiang,et al. Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .
[68] Dong Chen,et al. Nonlinear manifold representations for functional data , 2012, 1205.6040.
[69] R. Carroll,et al. Profile‐kernel versus backfitting in the partially linear models for longitudinal/clustered data , 2004 .
[70] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[71] H. Müller,et al. Nonparametric Regression Analysis of Growth Curves , 1984 .
[72] M. Yuan,et al. Optimal estimation of the mean function based on discretely sampled functional data: Phase transition , 2011, 1202.5134.
[73] Raymond J. Carroll,et al. A SIMULTANEOUS CONFIDENCE BAND FOR SPARSE LONGITUDINAL REGRESSION , 2012 .
[74] Peter Hall,et al. Assessing the finite dimensionality of functional data , 2006 .
[75] Hans-Georg Müller,et al. Functional Data Analysis , 2016 .
[76] Victor M. Panaretos,et al. Dispersion operators and resistant second-order functional data analysis , 2012 .
[77] P. Hall,et al. Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.
[78] Rob J Hyndman,et al. Rainbow Plots, Bagplots, and Boxplots for Functional Data , 2010 .
[79] Chung Chang,et al. Functional data classification: a wavelet approach , 2014, Computational Statistics.
[80] David L. Donoho,et al. Image Manifolds which are Isometric to Euclidean Space , 2005, Journal of Mathematical Imaging and Vision.
[81] Joel L. Horowitz,et al. Methodology and convergence rates for functional linear regression , 2007, 0708.0466.
[82] Fang Yao,et al. Partially functional linear regression in high dimensions , 2016 .
[83] Jing Wang,et al. POLYNOMIAL SPLINE CONFIDENCE BANDS FOR REGRESSION CURVES , 2009 .
[84] P. Hall,et al. On properties of functional principal components analysis , 2006 .
[85] R. Fraiman,et al. Kernel-based functional principal components ( , 2000 .
[86] Jane-Ling Wang,et al. Functional quasi‐likelihood regression models with smooth random effects , 2003 .
[87] Debashis Paul,et al. CONSISTENCY OF RESTRICTED MAXIMUM LIKELIHOOD ESTIMATORS OF PRINCIPAL COMPONENTS , 2008, 0805.0465.
[88] Marina Vannucci,et al. A Bayesian Hierarchical Model for Classification with Selection of Functional Predictors , 2010, Biometrics.
[89] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[90] A. Gelfand,et al. Hybrid Dirichlet mixture models for functional data , 2009 .
[91] D. Gervini. Warped functional regression , 2012, 1203.1975.
[92] Hsin-Cheng Huang,et al. Fixed and random effects selection in nonparametric additive mixed models , 2012 .
[93] Hulin Wu,et al. Nonparametric regression methods for longitudinal data analysis , 2006 .
[94] J. Ramsay. When the data are functions , 1982 .
[95] Mariela Sued,et al. Testing the Equality of Covariance Operators , 2011 .
[96] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[97] Victor M. Panaretos,et al. Fourier analysis of stationary time series in function space , 2013, 1305.2073.
[98] Sadanori Konishi,et al. Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application , 2010, J. Classif..
[99] Haibo Zhou,et al. Two-stage efficient estimation of longitudinal nonparametric additive models , 2007 .
[100] Bani K. Mallick,et al. Bayesian Curve Classification Using Wavelets , 2007 .
[101] Ulrich Stadtmüller,et al. Functional singular component analysis , 2011 .
[102] Hans-Georg Muller,et al. Empirical dynamics for longitudinal data , 2010, 1211.2630.
[103] Catherine A. Sugar,et al. Principal component models for sparse functional data , 1999 .
[104] L. Ferré,et al. Functional sliced inverse regression analysis , 2003 .
[105] Jeng-Min Chiou,et al. Functional clustering and identifying substructures of longitudinal data , 2007 .
[106] María Dolores Ruiz-Medina,et al. Wavelet-RKHS-based functional statistical classification , 2012, Adv. Data Anal. Classif..
[107] Hans-Georg Muller,et al. Functional linear regression via canonical analysis , 2010, 1102.5212.
[108] H. Müller,et al. Functional Convex Averaging and Synchronization for Time-Warped Random Curves , 2004 .
[109] E. A. Sylvestre,et al. Self Modeling Curve Resolution , 1971 .
[110] Piotr Kokoszka,et al. A test of significance in functional quadratic regression , 2013 .
[111] C. R. Rao,et al. Some statistical methods for comparison of growth curves. , 1958 .
[112] Nancy E. Heckman,et al. Spline Smoothing in a Partly Linear Model , 1986 .
[113] M. Pensky,et al. Clustering time-course microarray data using functional Bayesian infinite mixture model , 2012 .
[114] J. Ramsay,et al. Some Tools for Functional Data Analysis , 1991 .
[115] Arnab Maity,et al. Nonparametric additive regression for repeatedly measured data , 2009 .
[116] John H. Maddocks,et al. Second-Order Comparison of Gaussian Random Functions and the Geometry of DNA Minicircles , 2010 .
[117] J. Vaupel,et al. Reproductive potential predicts longevity of female Mediterranean fruitflies , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[118] Jianqing Fan,et al. Statistical Estimation in Varying-Coefficient Models , 1999 .
[119] Jane-Ling Wang,et al. From sparse to dense functional data and beyond , 2016 .
[120] Gareth M. James,et al. Functional linear discriminant analysis for irregularly sampled curves , 2001 .
[121] D. Degras,et al. Simultaneous confidence bands for nonparametric regression with functional data , 2009, 0908.1980.
[122] P. Speckman. Kernel smoothing in partial linear models , 1988 .
[123] X. Lin,et al. Inference in generalized additive mixed modelsby using smoothing splines , 1999 .
[124] Hans-Georg Müller,et al. Functional modeling of longitudinal data , 2008 .
[125] U. Grenander. Stochastic processes and statistical inference , 1950 .
[126] Luis Angel García-Escudero,et al. A Proposal for Robust Curve Clustering , 2005, J. Classif..
[127] J. Ramsay,et al. Principal components analysis of sampled functions , 1986 .
[128] Hongtu Zhu,et al. Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities , 2013, Journal of the American Statistical Association.
[129] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[130] Frédéric Ferraty,et al. Curves discrimination: a nonparametric functional approach , 2003, Comput. Stat. Data Anal..
[131] H. Müller,et al. Time ordering of gene coexpression. , 2006, Biostatistics.
[132] Suojin Wang,et al. Generalized empirical likelihood methods for analyzing longitudinal data , 2010, Biometrika.
[133] Aurore Delaigle,et al. Classification Using Censored Functional Data , 2013 .
[134] Tosio Kato. Perturbation theory for linear operators , 1966 .
[135] Byeong U. Park,et al. Time-Varying Additive Models for Longitudinal Data , 2013 .
[136] Hans-Georg Müller,et al. Functional embedding for the classification of gene expression profiles , 2010, Bioinform..
[137] Hans-Georg Müller,et al. Estimating Derivatives for Samples of Sparsely Observed Functions, With Application to Online Auction Dynamics , 2009 .
[138] Catherine A. Sugar,et al. Clustering for Sparsely Sampled Functional Data , 2003 .
[139] Chin-Tsang Chiang,et al. KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .
[140] C. J. Stone,et al. Additive Regression and Other Nonparametric Models , 1985 .
[141] J. Dauxois,et al. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .
[142] Kai F. Yu,et al. Nonparametric varying-coefficient models for the analysis of longitudinal data , 2002 .
[143] John Hinde,et al. Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data , 2014, Comput. Stat. Data Anal..
[144] Wei Wu,et al. Generative models for functional data using phase and amplitude separation , 2012, Comput. Stat. Data Anal..
[145] M. Kirkpatrick,et al. A quantitative genetic model for growth, shape, reaction norms, and other infinite-dimensional characters , 1989, Journal of mathematical biology.
[146] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[147] P. Bickel,et al. Local polynomial regression on unknown manifolds , 2007, 0708.0983.
[148] K. Karhunen. Zur Spektraltheorie stochastischer prozesse , 1946 .
[149] H. Müller,et al. Functional quadratic regression , 2010 .
[150] Jeffrey S. Morris,et al. Robust Classification of Functional and Quantitative Image Data Using Functional Mixed Models , 2012, Biometrics.
[151] Lajos Horv'ath,et al. A test of significance in functional quadratic regression , 2011, 1105.0014.
[152] H. Muller,et al. Generalized functional linear models , 2005, math/0505638.
[153] L. Ferré,et al. Smoothed Functional Inverse Regression , 2005 .
[154] Jane-Ling Wang,et al. Functional canonical analysis for square integrable stochastic processes , 2003 .
[155] Ingrid Van Keilegom,et al. Two-sample tests in functional data analysis starting from discrete data , 2007 .
[156] Jeng-Min Chiou,et al. Inferring gene expression dynamics via functional regression analysis , 2007, BMC Bioinformatics.
[157] F. Yao,et al. Penalized spline models for functional principal component analysis , 2006 .
[158] A. Gelfand,et al. Bayesian Nonparametric Functional Data Analysis Through Density Estimation. , 2009, Biometrika.
[159] G. He,et al. EXTENDING CORRELATION AND REGRESSION FROM MULTIVARIATE TO FUNCTIONAL DATA , 2000 .
[160] A. Qu,et al. Estimation and model selection in generalized additive partial linear models for correlated data with diverging number of covariates , 2014, 1405.6030.
[161] Frédéric Ferraty,et al. Most-predictive design points for functional data predictors , 2010 .
[162] D. Bosq. Linear Processes in Function Spaces: Theory And Applications , 2000 .
[163] H. Müller,et al. Functional Data Analysis for Sparse Longitudinal Data , 2005 .
[164] T. Hsing,et al. Theoretical foundations of functional data analysis, with an introduction to linear operators , 2015 .
[165] Vincent N. LaRiccia,et al. Convergence rates for smoothing spline estimators in varying coefficient models , 2010 .
[166] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .
[167] Wei Yu,et al. Inverse regression for longitudinal data , 2014, 1405.6017.
[168] Pai-Ling Li,et al. Correlation-Based Functional Clustering via Subspace Projection , 2008 .
[169] Anuj Srivastava,et al. Analysis of spike train data: Alignment and comparisons using the extended Fisher-Rao metric , 2014 .
[170] Yuko Araki,et al. Functional Logistic Discrimination Via Regularized Basis Expansions , 2009 .
[171] Karin Rothschild,et al. A Course In Functional Analysis , 2016 .
[172] A. Raftery,et al. Model-based Gaussian and non-Gaussian clustering , 1993 .
[173] Mathew W. McLean,et al. Journal of Computational and Graphical Statistics Functional Generalized Additive Models Functional Generalized Additive Models Accepted Manuscript Accepted Manuscript , 2022 .
[174] Fang Yao,et al. Functional Additive Models , 2008 .
[175] K. J. Utikal,et al. Inference for Density Families Using Functional Principal Component Analysis , 2001 .
[176] Sd Pezzulli,et al. Some properties of smoothed principal components analysis for functional data , 1993 .
[177] Jianqing Fan,et al. Test of Significance When Data Are Curves , 1998 .
[178] Zhen Zhang,et al. Functional density synchronization , 2011, Comput. Stat. Data Anal..
[179] Jing Wang,et al. Efficient and fast spline-backfitted kernel smoothing of additive models , 2009 .
[180] P. Hall,et al. Single and multiple index functional regression models with nonparametric link , 2011, 1211.5018.
[181] Hervé Cardot,et al. Conditional Functional Principal Components Analysis , 2007 .
[182] Ker-Chau Li,et al. Slicing Regression: A Link-Free Regression Method , 1991 .
[183] T. Hsing,et al. Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data , 2010, 1211.2137.
[184] Jianqing Fan,et al. Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.
[185] H. Müller,et al. Modeling Hazard Rates as Functional Data for the Analysis of Cohort Lifetables and Mortality Forecasting , 2009 .
[186] D. Whittaker,et al. A Course in Functional Analysis , 1991, The Mathematical Gazette.
[187] P. Hall,et al. Defining probability density for a distribution of random functions , 2010, 1002.4931.
[188] Pascal Sarda,et al. Factor models and variable selection in high-dimensional regression analysis , 2011 .
[189] Ricardo Fraiman,et al. An anova test for functional data , 2004, Comput. Stat. Data Anal..
[190] Xin Zhao,et al. The functional data analysis view of longitudinal data , 2004 .
[191] Damla Şentürk,et al. Covariate Adjusted Correlation Analysis via Varying Coefficient Models , 2005 .
[192] Harrison H. Zhou,et al. Estimation in Functional Regression for General Exponential Families , 2012 .
[193] Hans-Georg Ller,et al. Functional Modelling and Classification of Longitudinal Data. , 2005 .
[194] Spencer Graves,et al. Functional Data Analysis with R and MATLAB , 2009 .
[195] Ci-Ren Jiang,et al. COVARIATE ADJUSTED FUNCTIONAL PRINCIPAL COMPONENTS ANALYSIS FOR LONGITUDINAL DATA , 2010, 1003.0261.
[196] Gerhard Tutz,et al. Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm , 2013 .
[197] P. Hall,et al. Achieving near perfect classification for functional data , 2012 .
[198] Geert Molenberghs,et al. Longitudinal Data Analysis. Handbooks of Modern Statistical Methods , 2009 .
[199] Bernard W. Silverman,et al. Incorporating parametric effects into functional principal components analysis , 1995 .
[200] Hans-Georg Müller,et al. Reproduction is adapted to survival characteristics across geographically isolated medfly populations , 2009, Proceedings of the Royal Society B: Biological Sciences.
[201] Saad T. Bakir,et al. Nonparametric Regression and Spline Smoothing , 2000, Technometrics.
[202] M Giacofci,et al. Wavelet‐Based Clustering for Mixed‐Effects Functional Models in High Dimension , 2011, Biometrics.
[203] Hans-Georg Müller. Functional Data Analysis. , 2011 .
[204] T. Gasser,et al. Searching for Structure in Curve Samples , 1995 .
[205] L. Wasserman,et al. CATS , 2005 .
[206] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[207] T. Gasser,et al. Alignment of curves by dynamic time warping , 1997 .
[208] T. Gasser,et al. Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .
[209] Piotr Kokoszka,et al. Inference for Functional Data with Applications , 2012 .
[210] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[211] Julien Jacques,et al. Model-based clustering for multivariate functional data , 2013, Comput. Stat. Data Anal..
[212] B. Silverman,et al. Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .
[213] H. Cardot. Nonparametric estimation of smoothed principal components analysis of sampled noisy functions , 2000 .
[214] Jeng-Min Chiou,et al. Diagnostics for functional regression via residual processes , 2007, Comput. Stat. Data Anal..
[215] Mikhail Belkin,et al. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.