A decade of skyrmionics: Writing, deleting, reading and processing magnetic skyrmions roward spintronic applications

The field of skyrmionics has been actively investigated across a wide range of topics during the last decade. In this topical review, we review and discuss key results and findings in skyrmionics since the first experimental observation of magnetic skyrmions in 2009. We particularly focus on the theoretical, computational and experimental findings and advances that are directly relevant to the spintronic applications based on magnetic skyrmions, i.e. their writing, deleting, reading and processing driven by magnetic field, electric current and thermal energy. We then review several potential applications including information storage, logic computing gates and non-conventional devices such as neuromorphic computing devices. Finally, we discuss possible future research directions on magnetic skyrmions, which also cover rich topics on other topological textures such as antiskyrmions and bimerons in antiferromagnets and frustrated magnets.

[1]  Carles Navau,et al.  Analytical trajectories of skyrmions in confined geometries: Skyrmionic racetracks and nano-oscillators , 2016 .

[2]  A. Locatelli,et al.  Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.

[3]  S. Heinze,et al.  Enhanced skyrmion stability due to exchange frustration , 2017, Scientific Reports.

[4]  Teng Yang,et al.  Flower-like dynamics of coupled Skyrmions with dual resonant modes by a single-frequency microwave magnetic field , 2014, Scientific Reports.

[5]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[6]  G. Finocchio,et al.  A strategy for the design of skyrmion racetrack memories , 2014, Scientific Reports.

[7]  C. Reichhardt,et al.  Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review , 2016, Reports on progress in physics. Physical Society.

[8]  Y. Liu,et al.  Topological analysis of spin-torque driven magnetic skyrmion formation , 2016 .

[9]  C. Reichhardt,et al.  Thermal creep and the skyrmion Hall angle in driven skyrmion crystals , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  A. N’Diaye,et al.  Room temperature skyrmion ground state stabilized through interlayer exchange coupling , 2015 .

[11]  S. Blügel,et al.  Perpendicular reading of single confined magnetic skyrmions , 2015, Nature Communications.

[12]  A. Polyakov,et al.  Metastable States of Two-Dimensional Isotropic Ferromagnets , 1975 .

[13]  P. Fischer,et al.  Synthesizing skyrmion bound pairs in Fe-Gd thin films , 2016, 1603.07882.

[14]  Yu-heng Zhang,et al.  Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks , 2016, Proceedings of the National Academy of Sciences.

[15]  F. Buttner,et al.  Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy , 2016, Nature Physics.

[16]  Y. Tokura,et al.  Stability of two-dimensional skyrmions in thin films of Mn1−xFexSi investigated by the topological Hall effect , 2014 .

[17]  Yan Zhou,et al.  Dynamics of the antiferromagnetic skyrmion induced by a magnetic anisotropy gradient , 2018, Physical Review B.

[18]  Yan Zhou,et al.  Electric Field-Induced Creation and Directional Motion of Domain Walls and Skyrmion Bubbles. , 2017, Nano letters.

[19]  Yan Zhou,et al.  Control and manipulation of a magnetic skyrmionium in nanostructures , 2016, 1604.05909.

[20]  Y. Tokura,et al.  Observation of the magnetic skyrmion lattice in a MnSi nanowire by Lorentz TEM. , 2013, Nano letters.

[21]  H. Braun Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons , 2012 .

[22]  Yan Zhou,et al.  Thermally stable magnetic skyrmions in multilayer synthetic antiferromagnetic racetracks , 2016, 1601.03893.

[23]  N. Nagaosa,et al.  Purely electrical detection of a skyrmion in constricted geometry , 2015, 1512.07965.

[24]  Y. Tokura,et al.  Unusual Hall effect anomaly in MnSi under pressure. , 2008, Physical review letters.

[25]  H. Jónsson,et al.  Lifetime of racetrack skyrmions , 2018, Scientific Reports.

[26]  Sebastian Doniach,et al.  Phase transitions with spontaneous modulation-the dipolar Ising ferromagnet , 1982 .

[27]  Shizeng Lin,et al.  Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions , 2015, 1512.05012.

[28]  Y. Tokura,et al.  Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound , 2016, Nature Communications.

[29]  A. Samardak,et al.  Skyrmionium – high velocity without the skyrmion Hall effect , 2018, Scientific Reports.

[30]  M. Mochizuki,et al.  Current-induced skyrmion dynamics in constricted geometries. , 2013, Nature nanotechnology.

[31]  Yan Zhou,et al.  Skyrmion dynamics in a frustrated ferromagnetic film and current-induced helicity locking-unlocking transition , 2017, Nature Communications.

[32]  Yan Zhou,et al.  A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry , 2014, Nature Communications.

[33]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[34]  Yong Peng,et al.  Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2 , 2019, Science Advances.

[35]  Yan Zhou,et al.  Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack , 2015, Scientific Reports.

[36]  O. Heinonen,et al.  Generation of magnetic skyrmion bubbles by inhomogeneous spin Hall currents , 2015, 1511.04630.

[37]  M. Mostovoy,et al.  Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.

[38]  A. Vishwanath,et al.  Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. , 2006, Physical review letters.

[39]  Y. Tokura,et al.  Ultrafast optical excitation of magnetic skyrmions , 2015, Scientific Reports.

[40]  Yan Zhou,et al.  Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions , 2014, Scientific Reports.

[41]  Suzuki Takao,et al.  A study of magnetization distribution of submicron bubbles in sputtered Ho-Co thin films , 1983 .

[42]  H. Fangohr,et al.  Microwave-induced dynamic switching of magnetic skyrmion cores in nanodots , 2015, 1503.02869.

[43]  A. Fert,et al.  Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions. , 2017, Nano letters.

[44]  Achim Rosch,et al.  Edge instabilities and skyrmion creation in magnetic layers , 2016, 1601.06922.

[45]  Y. Tokura,et al.  Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic , 2013, Nature Communications.

[46]  Yue Zheng,et al.  Realization of skyrmion subtracter and diverter in a voltage-gated synthetic antiferromagnetic racetrack , 2019, Journal of Applied Physics.

[47]  Naoya Shibata,et al.  Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice , 2016, Science Advances.

[48]  Gong Chen,et al.  Skyrmion Hall effect , 2017, Nature Physics.

[49]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[50]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[51]  Alexey A. Kovalev,et al.  Boundary twists, instabilities, and creation of skyrmions and antiskyrmions , 2018, Physical Review Materials.

[52]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[53]  Shenmin Zhang,et al.  Creation of artificial skyrmions and antiskyrmions by anisotropy engineering , 2016, Scientific Reports.

[54]  A. Saxena,et al.  Particle model for skyrmions in metallic chiral magnets: Dynamics, pinning, and creep , 2013, 1302.6205.

[55]  Yan Zhou,et al.  Current-Driven Dynamics of Frustrated Skyrmions in a Synthetic Antiferromagnetic Bilayer , 2018, Physical Review Applied.

[56]  Masahiro Sato,et al.  Ultrafast generation of skyrmionic defects with vortex beams: Printing laser profiles on magnets , 2016, 1609.06816.

[57]  A. Fert,et al.  Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature , 2018, Nature Nanotechnology.

[58]  Denys Makarov,et al.  Magnetization dynamics of imprinted non-collinear spin textures , 2015 .

[59]  X. Liu,et al.  Dynamics of a magnetic skyrmionium driven by a spin wave. , 2018, 2018 IEEE International Magnetic Conference (INTERMAG).

[60]  A. Fert,et al.  Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. , 2016, Nature nanotechnology.

[61]  H. Béa,et al.  Large-Voltage Tuning of Dzyaloshinskii-Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chirality. , 2018, Nano letters.

[62]  R. Georgii,et al.  Formation and rotation of skyrmion crystal in the chiral-lattice insulator Cu 2 OSeO 3 , 2012, 1206.5220.

[63]  K. Khoo,et al.  Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. , 2016, Nature materials.

[64]  Di Wu,et al.  Tuning the stability and the skyrmion Hall effect in magnetic skyrmions by adjusting their exchange strengths with magnetic disks , 2017, Journal of Magnetism and Magnetic Materials.

[65]  Roberto E. Troncoso,et al.  Brownian motion of massive skyrmions in magnetic thin films , 2014 .

[66]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature communications.

[67]  M. Mostovoy,et al.  Edge states and skyrmion dynamics in nanostripes of frustrated magnets , 2016, Nature Communications.

[68]  M. Mochizuki,et al.  Magnetoelectric resonances and predicted microwave diode effect of the skyrmion crystal in a multiferroic chiral-lattice magnet , 2013, 1303.4491.

[69]  Kaushik Roy,et al.  Magnetic Skyrmion as a Spintronic Deep Learning Spiking Neuron Processor , 2018, IEEE Transactions on Magnetics.

[70]  M. Cantoni,et al.  In Situ Electric Field Skyrmion Creation in Magnetoelectric Cu2OSeO3. , 2017, Nano letters.

[71]  T. Nozaki,et al.  Brownian motion of skyrmion bubbles and its control by voltage applications , 2019, Applied Physics Letters.

[72]  Ying Zhang,et al.  Multiple tuning of magnetic biskyrmions using in situ L-TEM in centrosymmetric MnNiGa alloy , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[73]  Kang L. Wang,et al.  Electric-field guiding of magnetic skyrmions , 2015, 1505.03972.

[74]  Y. Zhou,et al.  Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current , 2016, Journal of Magnetism and Magnetic Materials.

[75]  David W. McComb,et al.  Chiral bobbers and skyrmions in epitaxial FeGe/Si(111) films , 2017, 1706.08248.

[76]  A. Scholl,et al.  Topology of spin meron pairs in coupled Ni/Fe/Co/Cu(001) disks , 2016 .

[77]  P. Sutcliffe,et al.  Skyrmion Knots in Frustrated Magnets. , 2017, Physical review letters.

[78]  Y. Tokura,et al.  Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. , 2013, Nature nanotechnology.

[79]  P. Sutcliffe,et al.  Hopfions in chiral magnets , 2018, Journal of Physics A: Mathematical and Theoretical.

[80]  R. Lake,et al.  Topological charge analysis of ultrafast single skyrmion creation , 2014, 1411.7762.

[81]  A. A. Fraerman,et al.  Skyrmion states in multilayer exchange coupled ferromagnetic nanostructures with distinct anisotropy directions , 2015 .

[82]  Yu-heng Zhang,et al.  Edge-mediated skyrmion chain and its collective dynamics in a confined geometry , 2015, Nature Communications.

[83]  H. Ohno,et al.  A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. , 2010, Nature materials.

[84]  Yoshio Watanabe,et al.  Writing a skyrmion on multiferroic materials , 2015, 1511.08433.

[85]  J. Zang,et al.  Dynamics of an insulating Skyrmion under a temperature gradient. , 2013, Physical review letters.

[86]  S. Eisebitt,et al.  Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet , 2018, Nature Nanotechnology.

[87]  E. Linfield,et al.  Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs , 2017, Nature Nanotechnology.

[88]  Pietro Burrascano,et al.  Electrical detection of single magnetic skyrmion at room temperature , 2017 .

[89]  R. Wiesendanger,et al.  Impact of the skyrmion spin texture on magnetoresistance , 2017, 1701.09077.

[90]  M. Mochizuki Controlled creation of nanometric skyrmions using external magnetic fields , 2017, 1809.04331.

[91]  Takeshi Ogasawara,et al.  Submicron-scale spatial feature of ultrafast photoinduced magnetization reversal in TbFeCo thin film , 2009 .

[92]  Alexander Mook,et al.  Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin Hall effect , 2017, 1707.05267.

[93]  Kang L. Wang,et al.  Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. , 2016, Nano letters.

[94]  V. Alfaro,et al.  A new classical solution of the Yang-Mills field equations , 1976 .

[95]  S. Rohart,et al.  Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction , 2013, 1310.0666.

[96]  A. Fert,et al.  Magnetic skyrmions: advances in physics and potential applications , 2017 .

[97]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[98]  Seonghoon Woo Skyrmions learn some new moves , 2018, Nature Electronics.

[99]  N. Nagaosa,et al.  Creation of skyrmions and antiskyrmions by local heating , 2014, Nature Communications.

[100]  P. Grundy,et al.  Bubble domains in magnetostatically coupled garnet films , 1973 .

[101]  J. Han,et al.  Skyrmion Generation by Current , 2012, 1203.0638.

[102]  C. Jin,et al.  Real-space observation of individual skyrmions in helimagnetic nanostripes , 2015 .

[103]  A. Saxena,et al.  Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy , 2014, 1406.1422.

[104]  Y. Tokura,et al.  Transformation between meron and skyrmion topological spin textures in a chiral magnet , 2018, Nature.

[105]  A. Fert,et al.  Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films , 2012, 1211.5970.

[106]  A. Thiele Steady-State Motion of Magnetic Domains , 1973 .

[107]  S. Urazhdin,et al.  Dynamical skyrmion state in a spin current nano-oscillator with perpendicular magnetic anisotropy. , 2013, Physical review letters.

[108]  Yan Zhou,et al.  Magnetic bilayer-skyrmions without skyrmion Hall effect , 2015, Nature Communications.

[109]  K. Inoue,et al.  Current-induced shuttlecock-like movement of non-axisymmetric chiral skyrmions , 2018, Scientific Reports.

[110]  M. Mochizuki,et al.  Universal current-velocity relation of skyrmion motion in chiral magnets , 2013, Nature Communications.

[111]  R. E. Troncoso,et al.  Thermally assisted current-driven skyrmion motion , 2014, 1402.1501.

[112]  Y. Tokura,et al.  Biskyrmion states and their current-driven motion in a layered manganite , 2014, Nature Communications.

[113]  J. Atulasimha,et al.  Voltage controlled core reversal of fixed magnetic skyrmions without a magnetic field , 2016, Scientific Reports.

[114]  J. Miltat,et al.  Brownian motion of magnetic domain walls and skyrmions, and their diffusion constants , 2018, Physical Review B.

[115]  Jörg Raabe,et al.  Current‐Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures , 2018, Advanced materials.

[116]  Ke He,et al.  Dimensional Crossover-Induced Topological Hall Effect in a Magnetic Topological Insulator. , 2017, Physical review letters.

[117]  Yan Zhou,et al.  A microwave field-driven transistor-like skyrmionic device with the microwave current-assisted skyrmion creation , 2016, 1601.05559.

[118]  Yan Zhou,et al.  High-topological-number magnetic skyrmions and topologically protected dissipative structure , 2015, 1505.00522.

[119]  Yu-heng Zhang,et al.  Enhanced Stability of the Magnetic Skyrmion Lattice Phase under a Tilted Magnetic Field in a Two-Dimensional Chiral Magnet. , 2017, Nano letters.

[120]  G. Finocchio,et al.  Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots , 2017, 1706.07569.

[121]  M. Ezawa Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films. , 2010, Physical review letters.

[122]  Y. Tokura,et al.  Robust formation of Skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. , 2012, Physical review letters.

[123]  Yan Zhou,et al.  Skyrmions in Magnetic Tunnel Junctions. , 2018, ACS applied materials & interfaces.

[124]  E. Fullerton,et al.  Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films , 2017, 1711.07101.

[125]  S. Blügel,et al.  Switching of chiral magnetic skyrmions by picosecond magnetic field pulses via transient topological states , 2016, Scientific Reports.

[126]  Carles Navau,et al.  Imprinting skyrmions in thin films by ferromagnetic and superconducting templates , 2014, 1407.0928.

[127]  Yan Zhou,et al.  Skyrmion-Electronics: An Overview and Outlook , 2016, Proceedings of the IEEE.

[128]  Y. Tokura,et al.  Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice , 2016 .

[129]  Peng Yan,et al.  Photonic orbital angular momentum transfer and magnetic skyrmion rotation. , 2017, Optics express.

[130]  J. Barker,et al.  Static and Dynamical Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature. , 2015, Physical review letters.

[131]  Arata Tsukamoto,et al.  Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet , 2018, Nature Nanotechnology.

[132]  A. Hubert,et al.  The stability of vortex-like structures in uniaxial ferromagnets , 1999 .

[133]  Wei Ning,et al.  Electrical probing of field-driven cascading quantized transitions of skyrmion cluster states in MnSi nanowires , 2015, Nature communications.

[134]  R. Duine,et al.  Current-induced rotational torques in the skyrmion lattice phase of chiral magnets , 2011, 1103.5548.

[135]  Eugene M. Chudnovsky,et al.  Writing skyrmions with a magnetic dipole , 2018, Journal of Applied Physics.

[136]  Shizeng Lin Edge instability in a chiral stripe domain under an electric current and skyrmion generation , 2015, 1510.07353.

[137]  Jiadong Zang,et al.  Binding a hopfion in a chiral magnet nanodisk , 2018, Physical Review B.

[138]  S. Eisebitt,et al.  Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. , 2017, Nature nanotechnology.

[139]  A. Vishwanath,et al.  Chirality induced anomalous-Hall effect in helical spin crystals , 2007, 0706.1841.

[140]  C. Chien,et al.  Extended Skyrmion phase in epitaxial FeGe(111) thin films. , 2012, Physical review letters.

[141]  Young Sun,et al.  Real-Space Observation of Nonvolatile Zero-Field Biskyrmion Lattice Generation in MnNiGa Magnet. , 2017, Nano letters.

[142]  R. Wiesendanger,et al.  Field-dependent size and shape of single magnetic Skyrmions. , 2015, Physical review letters.

[143]  Yan Zhou,et al.  Complementary Skyrmion Racetrack Memory With Voltage Manipulation , 2016, IEEE Electron Device Letters.

[144]  H. Yuan,et al.  Skyrmion Creation and Manipulation by Nano-Second Current Pulses , 2016, Scientific Reports.

[145]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[146]  F. Buttner,et al.  Magnetostatic twists in room-temperature skyrmions explored by nitrogen-vacancy center spin texture reconstruction , 2016, Nature Communications.

[147]  D. Wu,et al.  Creating an artificial two-dimensional Skyrmion crystal by nanopatterning. , 2013, Physical review letters.

[148]  H. Béa,et al.  The Skyrmion Switch: Turning Magnetic Skyrmion Bubbles on and off with an Electric Field. , 2016, Nano letters.

[149]  M. Mochizuki,et al.  Resonance modes and microwave-driven translational motion of a skyrmion crystal under an inclined magnetic field , 2018, Physical Review B.

[150]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[151]  R. Wiesendanger Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics , 2016 .

[152]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .