A Reactive Trajectory Controller for Object Manipulation in Human Robot Interaction

This paper presents a reactive trajectory controller for manipulating objects in Human Robot Interaction (HRI) context. The trajectories to be followed by the robot are provided by a human aware motion planner. The controller is based on an online trajectory generator, which is capable of calculating a trajectory from an arbitrary initial condition to a target within one control cycle. The controller is capable of switching to a new trajectory each time the motion planner provides a new trajectory, changing the frame in which the input trajectory is controlled and tracking a target or a trajectory in a frame, which moves with respect to the robot frame. The controller chooses different control modes for different situations. Visual servoing by trajectory generation is considered as one case of the control situations. Some results obtained with this controller are presented to illustrate the potential of the approach.

[1]  Antonio Bicchi,et al.  An atlas of physical human-robot interaction , 2008 .

[2]  Friedrich M. Wahl,et al.  Manipulation Primitives - A Universal Interface between Sensor-Based Motion Control and Robot Programming , 2011, Robotic Systems for Handling and Assembly.

[3]  Rachid Alami,et al.  Spatial reasoning for human robot interaction , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  S. Liu,et al.  An on-line reference-trajectory generator for smooth motion of impulse-controlled industrial manipulators , 2002, 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No.02TH8623).

[5]  Friedrich M. Wahl,et al.  Towards On-Line Trajectory Computation , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  W. Wilson,et al.  Comparison of Basic Visual Servoing Methods , 2011, IEEE/ASME Transactions on Mechatronics.

[7]  B. Allotta,et al.  Mousebuster: a robot for real-time catching , 1994, IEEE Control Systems.

[8]  Torsten Kröger,et al.  Simple and robust visual servo control of robot arms using an on-line trajectory generator , 2012, 2012 IEEE International Conference on Robotics and Automation.

[9]  Dinesh Manocha,et al.  Fast Proximity Queries with Swept Sphere Volumes , 1999 .

[10]  Rachid Alami,et al.  Situation assessment for human-robot interactive object manipulation , 2011, 2011 RO-MAN.

[11]  Siddhartha S. Srinivasa,et al.  Toward seamless human-robot handovers , 2013, Journal of Human-Robot Interaction.

[12]  Brett Browning,et al.  A survey of robot learning from demonstration , 2009, Robotics Auton. Syst..

[13]  Rachid Alami,et al.  Planning Safe and Legible Hand-over Motions for Human-Robot Interaction , 2010 .

[14]  Daniel Sidobre,et al.  Central axis approach for computing n-finger force-closure grasps , 2008, 2008 IEEE International Conference on Robotics and Automation.

[15]  Aude Billard,et al.  Stochastic gesture production and recognition model for a humanoid robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[16]  Claudio Melchiorri,et al.  Trajectory Planning for Automatic Machines and Robots , 2010 .

[17]  Alessandro De Luca,et al.  Exploiting robot redundancy in collision detection and reaction , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Andrew T. Irish,et al.  Trajectory Learning for Robot Programming by Demonstration Using Hidden Markov Model and Dynamic Time Warping , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[19]  Matthieu Herrb,et al.  A tool for the specification and the implementation of operating modules in a distributed robot architecture , 1999 .

[20]  Khoi Nguyen,et al.  From motion planning to trajectory control with bounded jerk for service manipulator robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[21]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[22]  Clément Gosselin,et al.  Inverse kinematic functions for approach and catching operations , 1993, IEEE Trans. Syst. Man Cybern..

[23]  Matthieu Herrb,et al.  G/sup en/oM: a tool for the specification and the implementation of operating modules in a distributed robot architecture , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[24]  Helge J. Ritter,et al.  On-line planning of time-optimal, jerk-limited trajectories , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Xavier Broquère Planification de trajectoire pour la manipulation d'objets et l'interaction Homme-robot , 2011 .

[26]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[27]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[28]  Rachid Alami,et al.  Planning human-aware motions using a sampling-based costmap planner , 2011, 2011 IEEE International Conference on Robotics and Automation.

[29]  M Maarten Steinbuch,et al.  Human-robot interaction , 2014 .

[30]  Daniel Sidobre,et al.  Efficient models for grasp planning with a multi-fingered hand , 2012, Robotics Auton. Syst..