Dual graded graphs for Kac-Moody algebras

Motivated by affine Schubert calculus, we construct a family of dual graded graphs $(\Gamma_s,\Gamma_w)$ for an arbitrary Kac-Moody algebra $\g(A)$. The graded graphs have the Weyl group $W$ of $\g(A)$ as vertex set and are labeled versions of the strong and weak orders of $W$ respectively. Using a construction of Lusztig for quivers with an admissible automorphism, we define folded insertion for a Kac-Moody algebra and obtain Sagan-Worley shifted insertion from Robinson-Schensted insertion as a special case. Drawing on work of Stembridge, we analyze the induced subgraphs of $(\Gamma_s,\Gamma_w)$ which are distributive posets.

[1]  H. Thomas,et al.  A combinatorial rule for (co)minuscule Schubert calculus , 2006, math/0608276.

[2]  Sergey Fomin,et al.  Schensted Algorithms for Dual Graded Graphs , 1995 .

[3]  B Kostant,et al.  The nil Hecke ring and cohomology of G/P for a Kac-Moody group G. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Humphreys Reflection groups and coxeter groups , 1990 .

[5]  Robert A. Proctor Bruhat Lattices, Plane Partition Generating Functions, and Minuscule Representations , 1984, Eur. J. Comb..

[6]  Tetsuji Miwa,et al.  Crystal base for the basic representation of $$U_q (\widehat{\mathfrak{s}\mathfrak{l}}(n))$$ , 1990 .

[7]  George Lusztig,et al.  Introduction to Quantum Groups , 1993 .

[8]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[9]  Thomas Lam,et al.  Schubert polynomials for the affine Grassmannian , 2006, math/0603125.

[10]  John R. Stembridge,et al.  On the Fully Commutative Elements of Coxeter Groups , 1996 .

[11]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[12]  V. Kac Infinite dimensional Lie algebras: Frontmatter , 1990 .

[13]  Bruce E. Sagan Shifted tableaux, schur Q-functions, and a conjecture of R. Stanley , 1987, J. Comb. Theory, Ser. A.

[14]  Bruhat order on the fixed-point subgroup by a Coxeter graph automorphism , 2005 .

[15]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[16]  Jennifer Morse,et al.  Affine Insertion and Pieri Rules for the Affine Grassmannian , 2006 .

[17]  R. Carter REFLECTION GROUPS AND COXETER GROUPS (Cambridge Studies in Advanced Mathematics 29) , 1991 .

[18]  Robert A. Proctor,et al.  Minuscule Elements of Weyl Groups, the Numbers Game, andd-Complete Posets , 1999 .

[19]  Dale Raymond Worley,et al.  A theory of shifted Young tableaux , 1984 .

[20]  JOEL LEWIS,et al.  ON DIFFERENTIAL POSETS , 2007 .

[21]  K. C. Misra,et al.  Crystal base for the basic representation of Uq(sl(n)) , 1990 .

[22]  R. Carter,et al.  INTRODUCTION TO QUANTUM GROUPS (Progress in Mathematics 110) , 1995 .

[23]  R. Stanley,et al.  Enumerative Combinatorics: Index , 1999 .

[24]  S. Fomin,et al.  Generalized Robinson-Schensted-Knuth correspondence , 1988 .

[25]  John R. Stembridge,et al.  Minuscule elements of Weyl groups , 2001 .

[26]  Vinay V. Deodhar Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .

[27]  Sergey Fomin,et al.  Duality of Graded Graphs , 1994 .

[28]  Robert Steinberg,et al.  Endomorphisms of linear algebraic groups , 1968 .

[29]  Mark D. Haiman On mixed insertion, symmetry, and shifted young tableaux , 1989, J. Comb. Theory, Ser. A.