Approximate complex polynomial evaluation in near constant work per point

Given the n complex coecients of a degree ni 1 complex polynomial, we wish to evaluate the polynomial at a large number m n of points on the complex plane. This problem is required by many algebraic computations and so is considered in most basic algorithm texts (e.g., (A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, 1974)). We assume an arithmetic model of computation, where on each step we can execute an arithmetic operation, which is computed exactly. All previous exact algorithms (C. M. Fiduccia, Proceedings 4th Annual ACM Symposium on Theory of Computing, 1972, pp. 88{93; H. T. Kung, Fast Evaluation and Interpolation, Carnegie-Mellon, 1973; A. B. Borodin and I. Munro, The Computational Complexity of Algebraic and Numerical Problems, American Elsevier, 1975; V. Pan, A. Sadikou, E. Landowne, and O. Tiga, Comput. Math. Appl., 25 (1993), pp. 25{30) cost at least work ›(log 2 n) per point, and previously, there were no known approximation algorithms for complex polynomial evaluation within the unit circle with work bounds better than the fastest known exact algorithms. There are known approximation algorithms (V. Rokhlin, J. Complexity, 4 (1988), pp. 12{32; V. Y. Pan, J. H. Reif, and S. R. Tate, in Proceedings 32nd Annual IEEE Symposium on Foundations of Computer Science, 1992, pp. 703{713) for polynomial evaluation at real points, but these do not extend to evaluation at general points on the complex plane. We provide approximation algorithms for complex polynomial evaluation that cost, in many cases, near constant amortized work per point. Let k = log(jPj=), where jPj is the sum of the moduli of the coecients of the input polynomial P (z). Let ~ P (zj) be an -approx of P (z )i f upper bounds the modulus of the error of the approximation ~ P (zj) at each evaluation point zj, that is, jP (zj)i ~

[1]  Addendum , 1964 .

[2]  Victor Y. Pan,et al.  Fast evaluation and interpolation at the Chebyshev sets of points , 1989 .

[3]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[4]  A. C. R. Newbery Error Analysis for Polynomial Evaluation , 1974 .

[5]  V. Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data, II , 1995 .

[6]  J. Reif,et al.  N -body Simulation I: Fast Algorithms for Potential Field Evaluation and Trummer's Problem , 1996 .

[7]  W. M. Gentleman,et al.  Fast Fourier Transforms: for fun and profit , 1966, AFIPS '66 (Fall).

[8]  H. T. Kung Fast evaluation and interpolation , 1973 .

[9]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[10]  L. Greengard,et al.  A Fast Adaptive Multipole Algorithm for Particle Simulations , 1988 .

[11]  John A. Board,et al.  Fast Fourier Transform Accelerated Fast Multipole Algorithm , 1996, SIAM J. Sci. Comput..

[12]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[13]  Samuel D. Conte,et al.  Elementary Numerical Analysis: An Algorithmic Approach , 1975 .

[14]  Arthur L. Delcher,et al.  Optimal Parallel Evaluation of Tree-Structured Computations by Raking , 1988, AWOC.

[15]  C. Lanczos,et al.  Some improvements in practical Fourier analysis and their application to x-ray scattering from liquids , 1942 .

[16]  V. Rokhlin,et al.  Fast algorithms for polynomial interpolation, integration, and differentiation , 1996 .

[17]  L Greengard,et al.  On the Efficient Implementation of the Fast Multipole Algorithm. , 1988 .

[18]  A. Booth Numerical Methods , 1957, Nature.

[19]  M. Grigoriadis,et al.  A fast algorithm for Trummer's problem , 1987 .

[20]  Charles M. Fiduccia,et al.  Polynomial evaluation via the division algorithm the fast Fourier transform revisited , 1972, STOC.

[21]  Allan Borodin,et al.  Evaluating Polynomials at Many Points , 1971, Inf. Process. Lett..

[22]  Allan Borodin,et al.  Fast Modular Transforms via Division , 1972, SWAT.

[23]  Myron S. Henry Approximation by Polynomials: Interpolation and Optimal Nodes , 1984 .

[24]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[25]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[26]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[27]  Alfred V. Aho,et al.  Evaluating Polynomials at Fixed Sets of Points , 1975, SIAM J. Comput..

[28]  Sivan Toledo,et al.  The Future Fast Fourier Transform? , 1997, PPSC.

[29]  Victor Y. Pan,et al.  A new approach to fast polynomial interpolation and multipoint evaluation , 1993 .

[30]  A. Gerasoulis A fast algorithm for the multiplication of generalized Hilbert matrices with vectors , 1988 .

[31]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[32]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[33]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[34]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[35]  J. Reif,et al.  Parallel Tree Contraction Part 1: Fundamentals , 1989, Adv. Comput. Res..

[36]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[37]  Victor Y. Pan,et al.  The power of combining the techniques of algebraic and numerical computing: improved approximate multipoint polynomial evaluation and improved multipole algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[38]  V Rokhlin,et al.  A fast algorithm for the discrete laplace transformation , 1988, J. Complex..

[39]  Ellis Horowitz,et al.  A Fast Method for Interpolation Using Preconditioning , 1972, Information Processing Letters.