Experimental determination of acoustic properties using a two‐microphone random‐excitation technique
暂无分享,去创建一个
An experimental technique is presented for the determination of normal acoustic properties in a tube, including the effect of mean flow. An acoustic source is driven by Gaussian white noise to produce a randomly fluctuating sound field in a tube terminated by the system under investigation. Two stationary, wall‐mounted microphones measure the sound pressure at arbitrary but known positions in the tube. Theory is developed, including the effect of mean flow, showing that the incident‐ and reflected‐wave spectra, and the phase angle between the incident and reflected waves, can be determined from measurement of the auto‐ and cross‐spectra of the two microphone signals. Expressions for the normal specific acoustic impedance and the reflection coefficient of the tube termination are developed for a random sound field in the tube. Three no‐flow test cases are evaluated using the two‐microphone random‐excitation technique: a closed tube of specified length, an open, unbaffled tube of specified length, and a pro...
[1] William S. Gatley,et al. Methods for Evaluating the Performance of Small Acoustic Filters , 1969 .
[2] T. H. Melling,et al. The acoustic impendance of perforates at medium and high sound pressure levels , 1973 .
[3] Ml Munjal,et al. An accurate method for the experimental evaluation of the acoustical impedance of a black box , 1975 .
[4] T. Katra,et al. On the Dynamic Analysis and Evaluation of Compressor Mufflers , 1976 .