Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed

The paper contains an analytic reconstruction formula in thermoacoustic and photoacoustic tomography. It works for any geometry of point detectors placement along a closed surface and for variable sound speed satisfying a non-trapping condition. It is shown how this formula leads in particular to eigenfunction expansion reconstructions, including those recently obtained for the case of a uniform background. A uniqueness of reconstruction result is also obtained.

[1]  Otmar Scherzer,et al.  THERMOACOUSTIC TOMOGRAPHY AND THE CIRCULAR RADON TRANSFORM: EXACT INVERSION FORMULA , 2007 .

[2]  Mikhail I. Belishev,et al.  TOPICAL REVIEW: Boundary control in reconstruction of manifolds and metrics (the BC method) , 1997 .

[3]  Sun,et al.  Photoacoustic monopole radiation in one, two, and three dimensions. , 1991, Physical review letters.

[4]  S. G. Gindikin,et al.  Integral geometry in affine and projective spaces , 1982 .

[5]  Stephen J. Norton,et al.  Reconstruction of a two‐dimensional reflecting medium over a circular domain: Exact solution , 1980 .

[6]  R. Kruger,et al.  Photoacoustic ultrasound (PAUS)--reconstruction tomography. , 1995, Medical physics.

[7]  S. Gindikin,et al.  Lie groups and Lie algebras : E.B. Dynkin's seminar , 1995 .

[8]  Stephen J. Norton,et al.  Ultrasonic Reflectivity Imaging in Three Dimensions: Exact Inverse Scattering Solutions for Plane, Cylindrical, and Spherical Apertures , 1981, IEEE Transactions on Biomedical Engineering.

[9]  V. Edwards Scattering Theory , 1973, Nature.

[10]  A. Tam Applications of photoacoustic sensing techniques , 1986 .

[11]  Yuan Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. I. Planar geometry , 2002, IEEE Transactions on Medical Imaging.

[12]  Eric Todd Quinto,et al.  Injectivity Sets for the Radon Transform over Circles and Complete Systems of Radial Functions , 1996 .

[13]  S. G. Gindikin,et al.  Selected Topics in Integral Geometry , 2003 .

[14]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[15]  Richard Courant,et al.  Methods of Mathematical Physics, Volume II: Partial Differential Equations , 1963 .

[16]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[17]  Peter Kuchment,et al.  Some problems of integral geometry arising in tomography , 2006 .

[18]  Leonid Kunyansky A series solution and a fast algorithm for the inversion of the spherical mean Radon transform , 2007 .

[19]  Minghua Xu,et al.  Exact frequency-domain reconstruction for thermoacoustic tomography. II. Cylindrical geometry , 2002, IEEE Transactions on Medical Imaging.

[20]  B. Vainberg,et al.  Asymptotic methods in equations of mathematical physics , 1989 .

[21]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[22]  Gaik Ambartsoumian,et al.  Thermoacoustic tomography - implementation of exact backprojection formulas , 2005 .

[23]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[24]  Minghua Xu,et al.  Erratum: Universal back-projection algorithm for photoacoustic computed tomography [Phys. Rev. E 71, 016706 (2005)] , 2007 .

[25]  Yuan Xu,et al.  Effects of acoustic heterogeneity in breast thermoacoustic tomography , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[26]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[27]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[28]  S. Helgason Groups and geometric analysis , 1984 .

[29]  H. Weber,et al.  Temporal backward projection of optoacoustic pressure transients using fourier transform methods. , 2001, Physics in medicine and biology.

[30]  Lihong V. Wang,et al.  Thermoacoustic tomography with correction for acoustic speed variations , 2006, Physics in medicine and biology.

[31]  Carlos A. Berenstein,et al.  Approximation by spherical waves inLp-spaces , 1996 .

[32]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[33]  Peter Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[34]  Jin Cheng,et al.  Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves , 2005 .

[35]  T. Nagaoka,et al.  Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. , 2004, Physics in medicine and biology.

[36]  S. Patch,et al.  Thermoacoustic tomography--consistency conditions and the partial scan problem. , 2004, Physics in medicine and biology.

[37]  Lihong V. Wang,et al.  Reconstructions in limited-view thermoacoustic tomography. , 2004, Medical physics.

[38]  Y. Egorov,et al.  Partial Differential Equations IV , 1992 .

[39]  P. Kuchment Generalized Transforms of Radon Type and Their Applications , 2005 .

[40]  Eric Todd Quinto,et al.  The radon transform, inverse problems, and tomography : American Mathematical Society short course, January 3-4, 2005, Atlanta, Georgia , 2006 .

[41]  Robert A Kruger,et al.  Thermoacoustic computed tomography using a conventional linear transducer array. , 2003, Medical physics.

[42]  Peter Kuchment,et al.  A Range Description for the Planar Circular Radon Transform , 2006, SIAM J. Math. Anal..

[43]  E. T. Quinto,et al.  Range descriptions for the spherical mean Radon transform. I. Functions supported in a ball , 2006, math/0606314.

[44]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[45]  Lihong V. Wang,et al.  Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain , 2003, Nature Biotechnology.

[46]  Peter Kuchment,et al.  On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography , 2007 .

[47]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[48]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[49]  Minghua Xu,et al.  Time-domain reconstruction for thermoacoustic tomography in a spherical geometry , 2002, IEEE Transactions on Medical Imaging.

[50]  Lihong V. Wang,et al.  Universal back-projection algorithm for photoacoustic computed tomography. , 2005 .

[51]  Peter Kuchment,et al.  Mathematics of thermoacoustic and photoacoustic tomography , 2007 .

[52]  M. Haltmeier,et al.  Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Eric Todd Quinto,et al.  The Radon Transform, Inverse Problems, and Tomography , 2006 .

[54]  S. Helgason The Radon Transform , 1980 .

[55]  V. Palamodov Reconstructive Integral Geometry , 2004 .

[56]  Josephus Hulshof,et al.  Linear Partial Differential Equations , 1993 .

[57]  L. Ehrenpreis The Universality of the Radon Transform , 2003 .