Root-reducing capacity, rhizosphere acidification, peroxidase and catalase activities and nutrient levels of Citrus taiwanica and C. Volkameriana seedlings, under Fe deprivation conditions

Impact de la privation de Fe sur la capacite racinaire de reduction, l'acidification rhizospherique, l'activite de peroxidase et catalase ainsi que sur le niveau nutritif chez le Citrus taiwanica et le C. volkameriana. Le deficit en fer provoque par la privation, l'apport a faible dose ou l'addition de CaCO 3 /NaHCO 3 provoque des modifications physiologiques et biochimiques chez les souches du C. taiwanica et du C. volkameriana. Par exemple, le deficit en fer induit une augmentation de la capacite racinaire de reduction du Fe, ainsi qu'une acidification de la rhizosphere. Des plants de semis presentent une diminution de la capacite de reduction du fer lorsqu'ils sont traites avec une quantite suffisante de Fe (20 μM MM Fe-EDDHA). Le deficit en fer est associe a l'activite de la catalase et de la peroxidase. Il est egalement observe que la privation de Fe augmente la concentration de N, P, Ca, Mg, Mn et diminue celle de Fe et de Zn chez les feuilles jeunes des deux souches, C. volkameriana est plus sensible a la chlorose en fer que C. taiwanica.

[1]  J. Abadía,et al.  Iron chlorosis paradox in fruit trees , 1998 .

[2]  E. Landsberg Proton efflux and transfer cell formation as responses to Fe deficiency of soybean in nutrient solution culture , 1989, Plant and Soil.

[3]  V. Nenova,et al.  Physiological and biochemical changes in young maize plants under iron deficiency: 2. Catalase, peroxidase, and nitrate reductase activities in leaves , 1995 .

[4]  N. Uren,et al.  Iron deficiency stress responses amongst citrus rootstocks , 1993 .

[5]  Y. Gogorcena,et al.  Activated oxygen and antioxidant defences in iron‐deficient pea plants , 1995 .

[6]  J. Lucena Effects of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review , 2000 .

[7]  H. Bienfait Mechanisms in Fe-efficiency reactions of higher plants , 1988 .

[8]  N. Karimian,et al.  MANGANESE-IRON RELATIONSHIP IN SOYBEAN GROWN IN CALCAREOUS SOILS , 1996 .

[9]  V. Römheld,et al.  Rapid Method for Measuring Changes in pH and Reducing Processes Along Roots of Intact Plants , 1982 .

[10]  V. Römheld,et al.  Effect of bicarbonate and root zone temperature on uptake of Zn, Fe, Mn and Cu by different rice cultivars ( Oryza sativa L.) grown in calcareous soil , 1993 .

[11]  K. Mengel,et al.  Measurement of pH at the root surface of red clover (Trifolium pratense) grown in soils differing in proton buffer capacity , 2004, Biology and Fertility of Soils.

[12]  V. Römheld,et al.  Relationship between proton efflux and rhizodermal transfer cells induced by iron deficiency , 1983 .

[13]  V. Römheld,et al.  Different strategies in higher plants in mobilization and uptake of iron , 1986 .

[14]  D. Crowley,et al.  Stimulation of rhizosphere iron reduction and uptake in response to iron deficiency in citrus rootstocks , 1994 .

[15]  V. Römheld,et al.  Localization and capacity of proton pumps in roots of intact sunflower plants. , 1984, Plant physiology.

[16]  R. Chaney,et al.  Screening Strategies for Improved Nutrient Uptake and Use by Plants , 1989, HortScience.

[17]  A. Ranieri,et al.  Iron deficiency induces variations in oxidative stress bioindicators in sunflower plants , 1999 .

[18]  W. Wiebold,et al.  Use of bicarbonate in screening soybeans for resistance to iron chlorosis , 1984 .

[19]  D. W. Reed,et al.  Iron chlorosis development and growth response of peach rootstocks to bicarbonate 1 , 1993 .

[20]  V. Römheld,et al.  Effect of bicarbonate and root zone temperature on uptake of Zn, Fe, Mn and Cu by different rice cultivars (Oryza sativa L.) grown in calcareous soil , 2004, Plant and Soil.

[21]  E. Landsberg,et al.  Function of Rhizodermal Transfer Cells in the Fe Stress Response Mechanism of Capsicum annuum L. , 1986, Plant physiology.

[22]  V. Römheld,et al.  Factors affecting cation-anion uptake balance and iron acquisition in peanut plants grown on calcareous soils , 2004, Plant and Soil.

[23]  D. R. Hoagland,et al.  The Water-Culture Method for Growing Plants Without Soil , 2018 .

[24]  C. Wang Effect of temperature preconditioning on catalase, peroxidase, and superoxide dismutase in chilled zucchini squash , 1995 .

[25]  J. Abadía Leaf responses to Fe deficiency: A review , 1992 .

[26]  F. Romera,et al.  Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution , 2004, Plant and Soil.

[27]  K. Mengel,et al.  Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil , 1984, Plant and Soil.

[28]  F. Romera,et al.  Effects of bicarbonate and iron supply on Fe(III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock “Nemaguard” , 2000 .

[29]  L. Romero,et al.  Influence of plant age on mature leaf iron parameters , 1992 .

[30]  V. D. Jolley,et al.  Soybean response to iron‐deficiency stress as related to iron supply in the growth medium , 1987 .

[31]  J. Moraghan,et al.  Different iron‐manganese relationships in two flax cultivars , 1986 .

[32]  Hoffmann,et al.  Apoplastic pH and Fe(3+) reduction in intact sunflower leaves , 1999, Plant physiology.

[33]  S. Mehrotra,et al.  Reduction of Iron by Leaf Extracts and Its Significance for the Assay of Fe(II) Iron in Plants. , 1990, Plant physiology.

[34]  L. Romero,et al.  Biochemical indicators and iron index for the appraisal of the mineral status in leaves of cucumber and tomato , 1988 .

[35]  V. Römheld,et al.  Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. , 1986, Plant physiology.

[36]  O. Lunt,et al.  Iron chlorosis in horticultural plants, a review. , 1960 .

[37]  H. Lenhoff,et al.  A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. , 1980, Analytical biochemistry.

[38]  R. Cleland,et al.  Peroxidase changes during the cessation of elongation in Pisum sativum stems , 1974 .

[39]  K. Mengel Iron availability in plant tissues-iron chlorosis on calcareous soils , 2004, Plant and Soil.

[40]  L. Kochian,et al.  Induction of iron(III) and copper(II) reduction in pea (Pisum sativum L.) roots by Fe and Cu status: Does the root-cell plasmalemma Fe(III)-chelate reductase perform a general role in regulating cation uptake? , 1993, Planta.

[41]  M. Faust,et al.  Iron reduction by apple roots , 1985 .

[42]  W. Miller,et al.  Iron Deficiency Stress Influences Physiology of Iron Acquisition in Marigold (Tagetes erecta L.) , 1996 .