The shrinking property for NP and coNP

We study the shrinking and separation properties (two notions well-known in descriptive set theory) for NP and coNP and show that under reasonable complexity-theoretic assumptions, both properties do not hold for NP and the shrinking property does not hold for coNP. In particular we obtain the following results. 1.NP and coNP do not have the shrinking property unless PH is finite. In general, @S"n^P and @P"n^P do not have the shrinking property unless PH is finite. This solves an open question posed by Selivanov (1994) [33]. 2.The separation property does not hold for NP unless [email protected]?coNP. 3.The shrinking property does not hold for NP unless there exist NP-hard disjoint NP-pairs (existence of such pairs would contradict a conjecture of Even et al. (1984) [6]). 4.The shrinking property does not hold for NP unless there exist complete disjoint NP-pairs. Moreover, we prove that the assumption NP coNP is too weak to refute the shrinking property for NP in a relativizable way. For this we construct an oracle relative to which [email protected]?coNP, NP coNP, and NP has the shrinking property. This solves an open question posed by Blass and Gurevich (1984) [3] who explicitly ask for such an oracle.

[1]  Alan L. Selman Much ado about functions , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[2]  Nikolai K. Vereshchagin,et al.  Inverting Onto Functions and Polynomial Hierarchy , 2007, CSR.

[3]  Victor L. Selivanov Fine Hierarchy of Regular omega-Languages , 1995, TAPSOFT.

[4]  V. L. Selivanov Refining the polynomial hierarchy , 1999 .

[5]  Steven Homer,et al.  Oracles for structural properties: the isomorphism problem and public-key cryptography , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[6]  Yacov Yacobi,et al.  Cryptocomplexity and NP-Completeness , 1980, ICALP.

[7]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[8]  Lane A. Hemachandra,et al.  A complexity theory for feasible closure properties , 1993 .

[9]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[10]  Alan L. Selman,et al.  A Taxonomy of Complexity Classes of Functions , 1994, J. Comput. Syst. Sci..

[11]  Jie Wang,et al.  Nondeterministically Selective Sets , 1995, Int. J. Found. Comput. Sci..

[12]  Jacobo Torán,et al.  Optimal proof systems imply complete sets for promise classes , 2003, Inf. Comput..

[13]  Christian Glaßer,et al.  Reductions between disjoint NP-pairs , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[14]  A. Louveau,et al.  Some results in the wadge hierarchy of borel sets , 1983 .

[15]  M Sidman,et al.  Equivalence relations. , 1997, Journal of the experimental analysis of behavior.

[16]  Ashish V. Naik,et al.  A Hierarchy Based on Output Multiplicity , 1998, Theor. Comput. Sci..

[17]  Victor L. Selivanov Two Refinements of the Polynomial Hierarcht , 1994, STACS.

[18]  Ashish V. Naik The structural complexity of intractable search functions , 1995 .

[19]  Andreas Blass,et al.  Equivalence Relations, Invariants, and Normal Forms , 1983, SIAM J. Comput..

[20]  Lane A. Hemaspaandra,et al.  A Complexity Theory for Feasible Closure Properties , 1991, J. Comput. Syst. Sci..

[21]  Alan L. Selman,et al.  P-Selective Sets, Tally Languages, and the Behavior of Polynomial Time Reducibilities on NP , 1979, ICALP.

[22]  Andreas Blass,et al.  Equivalence relations, invariants, and normal forms , 1983, Logic and Machines.

[23]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[24]  Yacov Yacobi,et al.  The Complexity of Promise Problems with Applications to Public-Key Cryptography , 1984, Inf. Control..

[25]  Christian Glaßer,et al.  Disjoint NP-pairs , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[26]  Victor L. Selivanov,et al.  Fine Hierarchy of Regular Aperiodic omega -Languages , 2007, Developments in Language Theory.

[27]  Victor Selivanov,et al.  Fine Hierarchy of Regular Omega-Languages , 1995, Theor. Comput. Sci..

[28]  Lane A. Hemaspaandra,et al.  Computing Solutions Uniquely Collapses the Polynomial Hierarchy , 1994, SIAM J. Comput..

[29]  Pavel Pudl ak a On reducibility and symmetry of disjoint NP pairs , 2003 .

[30]  J. Köbler,et al.  New Collapse Consequences of NP Having Small Circuits , 1999, SIAM J. Comput..

[31]  Pavel Pudlák,et al.  On reducibility and symmetry of disjoint NP pairs , 2003, Theor. Comput. Sci..

[32]  Egon Börger,et al.  Proceedings of the Symposium "Rekursive Kombinatorik" on Logic and Machines: Decision Problems and Complexity , 1983 .

[33]  Timothy J. Long,et al.  Quantitative Relativizations of Complexity Classes , 1984, SIAM J. Comput..

[34]  Joseph R. Shoenfield,et al.  Degrees of models , 1960, Journal of Symbolic Logic.

[35]  Alexander A. Razborov,et al.  On provably disjoint NP-pairs , 1994, Electron. Colloquium Comput. Complex..

[36]  Lance Fortnow,et al.  Separability and One-Way Functions , 1994, ISAAC.

[37]  Christian Glaßer,et al.  Disjoint NP-Pairs , 2004, SIAM J. Comput..

[38]  Lance Fortnow,et al.  Inverting onto functions , 2003, Inf. Comput..

[39]  Victor L. Selivanov,et al.  Fine hierarchies and Boolean terms , 1995, Journal of Symbolic Logic.

[40]  D. C. Cooper,et al.  Theory of Recursive Functions and Effective Computability , 1969, The Mathematical Gazette.