H-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN TENSORS
暂无分享,去创建一个
[1] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[2] L. Qi. Eigenvalues and invariants of tensors , 2007 .
[3] Kung-Ching Chang,et al. Perron-Frobenius theorem for nonnegative tensors , 2008 .
[4] Marcello Pelillo,et al. New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.
[5] Michael K. Ng,et al. Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..
[6] Yongjun Liu,et al. An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor , 2010, J. Comput. Appl. Math..
[7] Luc T. Ikelle,et al. Appendix B - Nonnegative Tensor Factorization , 2010 .
[8] Qingzhi Yang,et al. Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..
[9] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[10] Joshua N. Cooper,et al. Spectra of Uniform Hypergraphs , 2011, 1106.4856.
[11] Tan Zhang,et al. Primitivity, the Convergence of the NQZ Method, and the Largest Eigenvalue for Nonnegative Tensors , 2011, SIAM Journal on Matrix Analysis and Applications.
[12] Yi,et al. LINEAR CONVERGENCE OF THE LZI ALGORITHM FOR WEAKLY POSITIVE TENSORS , 2012 .
[13] L. Qi. Symmetric nonnegative tensors and copositive tensors , 2012, 1211.5642.
[14] Liqun Qi,et al. Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..
[15] Jinshan Xie,et al. On the Z-eigenvalues of the adjacency tensors for uniform hypergraphs , 2013 .
[16] Jinshan Xie,et al. H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph , 2013 .
[17] S. Gaubert,et al. Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.
[18] Jinshan Xie,et al. On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..
[19] L. Qi,et al. Cored Hypergraphs, Power Hypergraphs and Their Laplacian H-Eigenvalues , 2013, 1304.6839.
[20] L. Qi,et al. The largest Laplacian and signless Laplacian H-eigenvalues of a uniform hypergraph , 2013, 1304.1315.
[21] Guoyin Li,et al. The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..
[22] Yi Xu,et al. Nonnegative Tensor Factorization, Completely Positive Tensors, and a Hierarchical Elimination Algorithm , 2013, SIAM J. Matrix Anal. Appl..
[23] L. Qi,et al. Strictly nonnegative tensors and nonnegative tensor partition , 2011, Science China Mathematics.
[24] Liqun Qi,et al. The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph , 2013, Discret. Appl. Math..
[25] Tan Zhang,et al. On Spectral Hypergraph Theory of the Adjacency Tensor , 2012, Graphs Comb..
[26] Liqun Qi,et al. M-Tensors and Some Applications , 2014, SIAM J. Matrix Anal. Appl..
[27] Liqun Qi,et al. The Laplacian of a uniform hypergraph , 2015, J. Comb. Optim..
[28] Marina Weber,et al. Using Algebraic Geometry , 2016 .