Gaussian process modelling of latent chemical species: applications to inferring transcription factor activities
暂无分享,去创建一个
Neil D. Lawrence | Antti Honkela | Magnus Rattray | Pei Gao | Neil D. Lawrence | M. Rattray | A. Honkela | Pei Gao
[1] Douglas B. Kell,et al. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..
[2] 김삼묘,et al. “Bioinformatics” 특집을 내면서 , 2000 .
[3] Chiara Sabatti,et al. Network component analysis: Reconstruction of regulatory signals in biological systems , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[4] Nir Friedman,et al. Inferring quantitative models of regulatory networks from expression data , 2004, ISMB/ECCB.
[5] Neil D. Lawrence,et al. A tractable probabilistic model for Affymetrix probe-level analysis across multiple chips , 2005, Bioinform..
[6] M. Barenco,et al. Ranked prediction of p53 targets using hidden variable dynamic modeling , 2006, Genome Biology.
[7] Neil D. Lawrence,et al. A probabilistic dynamical model for quantitative inference of the regulatory mechanism of transcription , 2006, Bioinform..
[8] Matthew C. Coleman,et al. Bayesian parameter estimation with informative priors for nonlinear systems , 2006 .
[9] Neil D. Lawrence,et al. Modelling transcriptional regulation using Gaussian Processes , 2006, NIPS.
[10] Michael P. Eichenlaub,et al. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. , 2006, Developmental cell.
[11] V. Vinciotti,et al. Reconstructing repressor protein levels from expression of gene targets in Escherichia coli , 2006, Proceedings of the National Academy of Sciences.
[12] Juho Rousu,et al. Probabilistic modeling and machine learning in structural and systems biology , 2007, BMC Bioinformatics.
[13] Mark A. Girolami,et al. Bayesian ranking of biochemical system models , 2008, Bioinform..
[14] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.