Organic Reactions in Microdroplets: Reaction Acceleration Revealed by Mass Spectrometry.

The striking finding that reaction acceleration occurs in confined-volume solutions sets up an apparent conundrum: Microdroplets formed by spray ionization can be used to monitor the course of bulk-phase reactions and also to accelerate reactions between the reagents in such a reaction. This Minireview introduces droplet and thin-film acceleration phenomena and summarizes recent methods applied to study accelerated reactions in confined-volume, high-surface-area solutions. Conditions that dictate either simple monitoring or acceleration are reconciled in the occurrence of discontinuous and complete desolvation as the endpoint of droplet evolution. The contrasting features of microdroplet and bulk-solution reactions are described together with possible mechanisms that drive reaction acceleration in microdroplets. Current applications of droplet microreactors are noted as is reaction acceleration in confined volumes and possible future scale-up.

[1]  Gordon G. Wallace,et al.  Electrostatic catalysis of a Diels–Alder reaction , 2016, Nature.

[2]  R. Cooks,et al.  The Role of the Interface in Thin Film and Droplet Accelerated Reactions Studied by Competitive Substituent Effects. , 2016, Angewandte Chemie.

[3]  Claudio Iacobucci,et al.  Elektrospray‐Massenspektrometrie: ein umgekehrtes Periskop zur Erforschung von Reaktionsmechanismen in Lösung , 2016 .

[4]  C. Iacobucci,et al.  Elusive Reaction Intermediates in Solution Explored by ESI-MS: Reverse Periscope for Mechanistic Investigations. , 2016, Angewandte Chemie.

[5]  R. M. Bain,et al.  Chemical Synthesis Accelerated by Paper Spray: The Haloform Reaction , 2016 .

[6]  R. Zare,et al.  Going beyond electrospray: mass spectrometric studies of chemical reactions in and on liquids , 2015, Chemical science.

[7]  Fang Zhang,et al.  Study on the accelerated Gutknecht self-cyclocondensation of amino-sugars under atmospheric pressure chemical ionization conditions , 2015 .

[8]  A. Oliver,et al.  Mechanistic features of the copper-free Sonogashira reaction from ESI-MS. , 2015, Dalton transactions.

[9]  Hai Luo,et al.  Copper(I)–triazole dimer formation and rate acceleration in in-source click reaction , 2015 .

[10]  Richard N Zare,et al.  Syntheses of Isoquinoline and Substituted Quinolines in Charged Microdroplets. , 2015, Angewandte Chemie.

[11]  R. M. Bain,et al.  On-Line Synthesis and Analysis by Mass Spectrometry , 2015 .

[12]  R. Zare,et al.  Detection of the short-lived radical cation intermediate in the electrooxidation of N,N-dimethylaniline by mass spectrometry. , 2015, Angewandte Chemie.

[13]  Richard N. Zare,et al.  Acceleration of reaction in charged microdroplets , 2015, Quarterly Reviews of Biophysics.

[14]  R. Zare,et al.  Identification of fleeting electrochemical reaction intermediates using desorption electrospray ionization mass spectrometry. , 2015, Journal of the American Chemical Society.

[15]  Hong Gil Nam,et al.  Microdroplet fusion mass spectrometry for fast reaction kinetics , 2015, Proceedings of the National Academy of Sciences.

[16]  C. Iacobucci,et al.  Dinuclear copper intermediates in copper(I)-catalyzed azide-alkyne cycloaddition directly observed by electrospray ionization mass spectrometry. , 2015, Angewandte Chemie.

[17]  Huaizhi Li,et al.  Formation of satellite droplets in flow-focusing junctions: volume and neck rupture , 2015 .

[18]  Y. Ho,et al.  Microfluidics-Enabled Enzyme Activity Measurement in Single Cells. , 2015, Methods in molecular biology.

[19]  R. Cooks,et al.  Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. , 2014, Angewandte Chemie.

[20]  F. Angelis,et al.  Insight into the Mechanisms of the Multicomponent Ugi and Ugi–Smiles Reactions by ESI‐MS(/MS) , 2014 .

[21]  B. A. Neto,et al.  What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs , 2014 .

[22]  M. Eberlin,et al.  The multicomponent Hantzsch reaction: comprehensive mass spectrometry monitoring using charge-tagged reagents. , 2014, Chemistry.

[23]  R. M. Bain,et al.  Mass Spectrometry in Organic Synthesis: Claisen–Schmidt Base-Catalyzed Condensation and Hammett Correlation of Substituent Effects , 2014 .

[24]  J. Roithová,et al.  Role of gold(I) α-oxo carbenes in the oxidation reactions of alkynes catalyzed by gold(I) complexes. , 2014, Journal of the American Chemical Society.

[25]  M. Bayindir,et al.  Surface Textured Polymer Fibers for Microfluidics , 2014 .

[26]  R. Zare,et al.  Speciation and decomposition pathways of ruthenium catalysts used for selective C–H hydroxylation , 2014 .

[27]  R. Cooks,et al.  On-line reaction monitoring and mechanistic studies by mass spectrometry: Negishi cross-coupling, hydrogenolysis, and reductive amination. , 2014, Angewandte Chemie.

[28]  B. Nicolai,et al.  Integration of microfluidics and FT-IR microscopy for label-free study of enzyme kinetics , 2014 .

[29]  R. Zare,et al.  Trinuclear Pd₃O₂ intermediate in aerobic oxidation catalysis. , 2014, Angewandte Chemie.

[30]  M. Eberlin,et al.  Task-specific ionic liquid incorporating anionic heteropolyacid-catalyzed Hantzsch and Mannich multicomponent reactions. Ionic liquid effect probed by ESI-MS(/MS) , 2014 .

[31]  R. Cooks,et al.  Beyond the flask: Reactions on the fly in ambient mass spectrometry , 2014 .

[32]  Helene Andersson-Svahn,et al.  Interfacing picoliter droplet microfluidics with addressable microliter compartments using fluorescence activated cell sorting , 2014 .

[33]  R. Cooks,et al.  Synthesis and catalytic reactions of nanoparticles formed by electrospray ionization of coinage metals. , 2014, Angewandte Chemie.

[34]  Andrew D Griffiths,et al.  Enhanced chemical synthesis at soft interfaces: a universal reaction-adsorption mechanism in microcompartments. , 2014, Physical review letters.

[35]  M. Eberlin,et al.  Probing the mechanism of the Ugi four-component reaction with charge-tagged reagents by ESI-MS(/MS). , 2014, Chemical communications.

[36]  Mark A. Johnson,et al.  Modes of activation of organometallic iridium complexes for catalytic water and C-H oxidation. , 2014, Inorganic chemistry.

[37]  J. S. McIndoe,et al.  Practical approaches to the ESI-MS analysis of catalytic reactions. , 2014, Journal of mass spectrometry : JMS.

[38]  R. Cooks,et al.  Chemical Reactivity Assessment Using Reactive Paper Spray Ionization Mass Spectrometry: The Katritzky Reaction. , 2013, ChemPlusChem.

[39]  Xuefei Sun,et al.  Controlled dispensing and mixing of pico- to nanoliter volumes using on-demand droplet-based microfluidics , 2013, Microfluidics and nanofluidics.

[40]  R. Zare,et al.  Chemoselective Pd-catalyzed oxidation of polyols: synthetic scope and mechanistic studies. , 2013, Journal of the American Chemical Society.

[41]  I. Rendina,et al.  Microfluidics assisted biosensors for label-free optical monitoring of molecular interactions , 2013 .

[42]  Stephen Mann Wie entsteht Leben: Ein altes Problem gebiert neue Chemie , 2013 .

[43]  S. Mann The origins of life: old problems, new chemistries. , 2013, Angewandte Chemie.

[44]  Lars Konermann,et al.  Unraveling the mechanism of electrospray ionization. , 2013, Analytical chemistry.

[45]  Huaizhi Li,et al.  Droplet formation and breakup dynamics in microfluidic flow-focusing devices: From dripping to jetting , 2012 .

[46]  R. Cooks,et al.  Accelerated carbon-carbon bond-forming reactions in preparative electrospray. , 2012, Angewandte Chemie.

[47]  R. Zare,et al.  Capturing fleeting intermediates in a catalytic C–H amination reaction cycle , 2012, Proceedings of the National Academy of Sciences.

[48]  R. Cooks,et al.  Peptide cross-linking at ambient surfaces by reactions of nanosprayed molecular cations. , 2012, Angewandte Chemie.

[49]  R. Cooks,et al.  Accelerated C–N Bond Formation in Dropcast Thin Films on Ambient Surfaces , 2012, Journal of The American Society for Mass Spectrometry.

[50]  R. Cooks,et al.  Reactions of Microsolvated Organic Compounds at Ambient Surfaces: Droplet Velocity, Charge State, and Solvent Effects , 2012, Journal of The American Society for Mass Spectrometry.

[51]  R. Zare,et al.  Transient Ru-methyl formate intermediates generated with bifunctional transfer hydrogenation catalysts , 2012, Proceedings of the National Academy of Sciences.

[52]  Jie Song,et al.  Flow accelerates adhesion between functional polyethylene and polyurethane , 2011 .

[53]  R. Cooks,et al.  Induced nanoelectrospray ionization for matrix-tolerant and high-throughput mass spectrometry. , 2011, Angewandte Chemie.

[54]  Leonardo S. Santos What do we know about reaction mechanism? the electrospray ionization mass spectrometry approach , 2011 .

[55]  Yi-Ping Ho,et al.  Detection of single enzymatic events in rare or single cells using microfluidics. , 2011, ACS nano.

[56]  D. Harrington,et al.  Powerful insight into catalytic mechanisms through simultaneous monitoring of reactants, products, and intermediates. , 2011, Angewandte Chemie.

[57]  Yan Liu,et al.  Development of submillisecond time-resolved mass spectrometry using desorption electrospray ionization. , 2011, Analytical chemistry.

[58]  F. Fernández,et al.  Ambient sampling/ionization mass spectrometry: applications and current trends. , 2011, Analytical chemistry.

[59]  R. Cooks,et al.  Ambient ion soft landing. , 2011, Analytical chemistry.

[60]  R. Cooks,et al.  Synchronized inductive desorption electrospray ionization mass spectrometry. , 2011, Angewandte Chemie.

[61]  B. Silva,et al.  The mechanism of Sandmeyer's cyclization reaction by electrospray ionization mass spectrometry. , 2011, Rapid communications in mass spectrometry : RCM.

[62]  R. Cooks,et al.  Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry , 2011 .

[63]  Allis S. Chien,et al.  Detecting reaction intermediates in liquids on the millisecond time scale using desorption electrospray ionization. , 2011, Angewandte Chemie.

[64]  J. Gordillo,et al.  Generation and breakup of Worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets , 2010, Journal of Fluid Mechanics.

[65]  A. Abate,et al.  Ultrahigh-throughput screening in drop-based microfluidics for directed evolution , 2010, Proceedings of the National Academy of Sciences.

[66]  Zheng Ouyang,et al.  Paper spray for direct analysis of complex mixtures using mass spectrometry. , 2010, Angewandte Chemie.

[67]  Stephan Gekle,et al.  Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation , 2009, Journal of Fluid Mechanics.

[68]  Leonardo S. Santos,et al.  The Morita-Baylis-Hillman Reaction: Insights into Asymmetry and Reaction Mechanisms by Electrospray Ionization Mass Spectrometry , 2009, Molecules.

[69]  M. Eberlin,et al.  The three-component biginelli reaction: a combined experimental and theoretical mechanistic investigation. , 2009, Chemistry.

[70]  M. Eberlin,et al.  Dualistic nature of the mechanism of the Morita-Baylis-Hillman reaction probed by electrospray ionization mass spectrometry. , 2009, The Journal of organic chemistry.

[71]  A. Pfaltz,et al.  Mass spectrometric screening of chiral catalysts by monitoring the back reaction of quasienantiomeric products: palladium-catalyzed allylic substitution. , 2008, Angewandte Chemie.

[72]  Leonardo S. Santos Online Mechanistic Investigations of Catalyzed Reactions by Electrospray Ionization Mass Spectrometry: A Tool to Intercept Transient Species in Solution , 2008 .

[73]  R. Collins,et al.  Electrohydrodynamic tip streaming and emission of charged drops from liquid cones , 2008 .

[74]  J. Metzger,et al.  Untersuchung der direkten organokatalysierten α‐Halogenierung von Aldehyden mit Elektrospray‐Ionisierungs‐Massenspektrometrie , 2007 .

[75]  J. Metzger,et al.  Electrospray Ionization Mass Spectrometric Study on the Direct Organocatalytic α-Halogenation of Aldehydes† , 2007 .

[76]  Mattias Goksör,et al.  Optical manipulation and microfluidics for studies of single cell dynamics , 2007 .

[77]  Minseok Seo,et al.  Microfluidic consecutive flow-focusing droplet generators. , 2007, Soft matter.

[78]  M. Eberlin,et al.  The mechanism of the Stille reaction investigated by electrospray ionization mass spectrometry. , 2007, The Journal of organic chemistry.

[79]  M. Eberlin Electrospray Ionization Mass Spectrometry: A Major Tool to Investigate Reaction Mechanisms in Both Solution and the Gas Phase , 2007, European journal of mass spectrometry.

[80]  R. Cooks,et al.  Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. , 2006, Analytical chemistry.

[81]  Helen Song,et al.  Reaktionen in Mikrofluidiktröpfchen , 2006 .

[82]  Helen Song,et al.  Reactions in droplets in microfluidic channels. , 2006, Angewandte Chemie.

[83]  G. Groß,et al.  Microreactor Array Assembly, Designed for Diversity Oriented Synthesis Using a Multiple Core Structure Library on Solid Support , 2006 .

[84]  Gwo-Bin Lee,et al.  Micro-droplet formation utilizing microfluidic flow focusing and controllable moving-wall chopping techniques , 2006 .

[85]  D. Thirumalai,et al.  Hydrophobic and ionic interactions in nanosized water droplets. , 2006, Journal of the American Chemical Society.

[86]  Michael E Phelps,et al.  Integrated microfluidics for parallel screening of an in situ click chemistry library. , 2006, Angewandte Chemie.

[87]  A. deMello Control and detection of chemical reactions in microfluidic systems , 2006, Nature.

[88]  M. Eberlin,et al.  Investigation of reaction mechanisms by electrospray ionization mass spectrometry: characterization of intermediates in the degradation of phenol by a novel iron/magnetite/hydrogen peroxide heterogeneous oxidation system. , 2006, Rapid communications in mass spectrometry : RCM.

[89]  Elena Mas-Marzá,et al.  Electrospray Ionization Mass Spectrometry Studies on the Mechanism of Hydrosilylation of Terminal Alkynes Using an N-Heterocyclic Carbene Complex of Iridium, Allow Detection/Characterization of All Reaction Intermediates⊥ , 2006 .

[90]  L. García‐Río,et al.  Water in oil microemulsions as reaction media for a Diels-Alder reaction between N-ethylmaleimide and cyclopentadiene. , 2006, The Journal of organic chemistry.

[91]  Huanwen Chen,et al.  Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation. , 2006, Chemical communications.

[92]  Zheng Ouyang,et al.  Ambient Mass Spectrometry , 2006, Science.

[93]  R. Cooks,et al.  cis-Diol functional group recognition by reactive desorption electrospray ionization (DESI). , 2006, Chemical communications.

[94]  R. Cooks,et al.  Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology. , 2005, Journal of mass spectrometry : JMS.

[95]  Rustem F Ismagilov,et al.  Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. , 2005, Current opinion in structural biology.

[96]  M. Finn,et al.  "On water": unique reactivity of organic compounds in aqueous suspension. , 2005, Angewandte Chemie.

[97]  D. Hagberg,et al.  On the solvation of ions in small water droplets. , 2005, The journal of physical chemistry. B.

[98]  M. López-Quintela,et al.  Microemulsion dynamics and reactions in microemulsions , 2004 .

[99]  R. Cooks,et al.  Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization , 2004, Science.

[100]  M. Eberlin,et al.  Probing the mechanism of the Baylis-Hillman reaction by electrospray ionization mass and tandem mass spectrometry. , 2004, Angewandte Chemie.

[101]  Achim Wixforth,et al.  Acoustic manipulation of small droplets , 2004, Analytical and bioanalytical chemistry.

[102]  P. Carson,et al.  On the acoustic vaporization of micrometer-sized droplets. , 2004, The Journal of the Acoustical Society of America.

[103]  R Graham Cooks,et al.  Electrosonic spray ionization. A gentle technique for generating folded proteins and protein complexes in the gas phase and for studying ion-molecule reactions at atmospheric pressure. , 2004, Analytical chemistry.

[104]  H. Gunawardena,et al.  Nanoelectrospray ionization of protein mixtures: solution pH and protein pI. , 2004, Analytical chemistry.

[105]  S. Weintraub,et al.  Reaction of Acyl Glucuronides with Insulin In Vitro: Identification of an Imine Mechanism by Electrospray lonization Mass Spectrometry , 1998, Pharmaceutical Research.

[106]  Peter Chen Elektrosprayionisierungs‐Tandem‐Massenspektrometrie im Hochdurchsatz‐Screening homogener Katalysatoren , 2003 .

[107]  Peter Chen Electrospray ionization tandem mass spectrometry in high-throughput screening of homogeneous catalysts. , 2003, Angewandte Chemie.

[108]  A. Tuck The Role of Atmospheric Aerosols in the Origin Of Life , 2002 .

[109]  K. J. Koch,et al.  Chiral transmission between amino acids: chirally selective amino acid substitution in the serine octamer as a possible step in homochirogenesis. , 2002, Angewandte Chemie.

[110]  Jentaie Shiea,et al.  Detecting large biomolecules from high-salt solutions by fused-droplet electrospray ionization mass spectrometry. , 2002, Analytical chemistry.

[111]  L. Konermann,et al.  Electrochemically induced pH changes resulting in protein unfolding in the ion source of an electrospray mass spectrometer. , 2001, Analytical chemistry.

[112]  C. Enke,et al.  Practical implications of some recent studies in electrospray ionization fundamentals. , 2001, Mass spectrometry reviews.

[113]  C. Dobson,et al.  Atmospheric aerosols as prebiotic chemical reactors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[114]  M. Siegel,et al.  Mechanism of inhibition of the class A beta -lactamases PC1 and TEM-1 by tazobactam. Observation of reaction products by electrospray ionization mass spectrometry. , 2000, The Journal of biological chemistry.

[115]  L. Konermann,et al.  Effects of pH on the kinetic reaction , 2000, Journal of the American Society for Mass Spectrometry.

[116]  H H Hill,et al.  Secondary electrospray ionization ion mobility spectrometry/mass spectrometry of illicit drugs. , 2000, Analytical chemistry.

[117]  Craig,et al.  Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements , 1998, Science.

[118]  J. Gajewski The Claisen Rearrangement. Response to Solvents and Substituents: The Case for Both Hydrophobic and Hydrogen Bond Acceleration in Water and for a Variable Transition State , 1997 .

[119]  Feimeng Zhou,et al.  Changes in bulk solution pH caused by the inherent controlled-current electrolytic process of an electrospray ion source , 1997 .

[120]  D. Oancea,et al.  SOLVENT EFFECT ON ION-MOLECULE REACTIONS : FROM SOLUTION TO GAS PHASE KINETICS , 1997 .

[121]  Richard D. Smith,et al.  Principles and practice of electrospray ionization—mass spectrometry for large polypeptides and proteins , 1991 .

[122]  Ronald Breslow,et al.  Hydrophobic Effects on Simple Organic Reactions in Water , 1991 .

[123]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[124]  B. Khuri-Yakub,et al.  Nozzleless droplet formation with focused acoustic beams , 1989 .

[125]  P. Kebarle,et al.  Solvation energies of ions and ionic transition states from studies of gas-phase ion–molecule reactions and equilibria , 1988 .

[126]  J. Fenn,et al.  Electrospray ion source: another variation on the free-jet theme , 1984 .

[127]  Ronald Breslow,et al.  Hydrophobic acceleration of Diels-Alder reactions , 1980 .

[128]  H. S. Fogler,et al.  Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium , 1978, Journal of Fluid Mechanics.

[129]  H. S. Fogler,et al.  Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets , 1978, Journal of Fluid Mechanics.