Parallel generation of quadripartite cluster entanglement in the optical frequency comb.

Scalability and coherence are two essential requirements for the experimental implementation of quantum information and quantum computing. Here, we report a breakthrough toward scalability: the simultaneous generation of a record 15 quadripartite entangled cluster states over 60 consecutive cavity modes (Q modes), in the optical frequency comb of a single optical parametric oscillator. The amount of observed entanglement was constant over the 60 Q modes, thereby proving the intrinsic scalability of this system. The number of observable Q modes was restricted by technical limitations, and we conservatively estimate the actual number of similar clusters to be at least 3 times larger. This result paves the way to the realization of large entangled states for scalable quantum information and quantum computing.

[1]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  W. Marsden I and J , 2012 .