MOCADI_FUSION: Extension of the Monte-Carlo code MOCADI to heavy-ion fusion–evaporation reactions

We have recently developed a code, called MOCADI_FUSION, for tracing fusion–evaporation residues (ERs) through matter within ion-optical systems. The program is based on the existing Monte-Carlo code MOCADI, which has been extended by including the kinematics of fusion–evaporation reactions and the atomic interaction of the ERs with the target atoms. The ion optics of the experimental set-up used for the selection of the desired species is combined with the phase-space distribution of the ERs at the target exit into MOCADI to evaluate the secondary beam properties (beam profile, separation quality, transmission, etc.) along the separator. The code has been tested for the velocity filter SHIP at GSI, and it reproduces the set-up characteristics (angular, charge state and velocity acceptances) and the experimental transmission data. MOCADI_FUSION has been also used for the SHIPTRAP experiment to evaluate the range distribution of the ERs in the gas cell and to estimate the overall SHIPTRAP efficiency.

[1]  D. Bazzacco,et al.  Emission of Intermediate Mass Fragments Using Gamma-spectroscopic Techniques , 1998 .

[2]  K. Blaum,et al.  The ion-trap facility SHIPTRAP , 2005 .

[3]  A. H. Wapstra,et al.  The Nubase evaluation of nuclear and decay properties , 2003 .

[4]  H. Kluge,et al.  Shell model structure at100Sn — The nuclides98Ag,103In, and104, 105Sn , 1995 .

[5]  A. Yeremin,et al.  On ionic charge distributions of heavy evaporation residues passing through a carbon foil , 1994 .

[6]  G. Münzenberg,et al.  MOCADI, a universal Monte Carlo code for the transport of heavy ions through matter within ion-optical systems , 1997 .

[7]  D. Foltescu,et al.  Proton-neutron interaction at N≅Z — First observation of the Tz=1 nucleus4694Pd48 in-beam , 1995 .

[8]  W. Henning The GSI project: An international facility for ions and antiprotons , 2004 .

[9]  G. Münzenberg,et al.  Cross sections for evaporation residue production near theN=126 shell closure , 1984 .

[10]  O. Malyshev,et al.  MONTE-CARLO OPTIMIZATION OF THE TRANSMISSION OF RECOIL SEPARATORS , 1999 .

[11]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[12]  I. S. Dmitriev,et al.  On the equilibrium charge distribution in heavy element ion beams , 1968 .

[13]  A Chaudhuri,et al.  First Penning trap mass measurements beyond the proton drip line. , 2008, Physical review letters.

[14]  F. Hessberger,et al.  ‘Slow’ residues observed in the reaction20Ne+208Pb at E/A=8.6, 11.4 and 15.0 MeV/u , 1994 .

[15]  H. Gäggeler,et al.  Cold fusion reactions with 48Ca , 1989 .

[16]  K. Blaum,et al.  Mass measurements in the endpoint region of the rp-process at SHIPTRAP , 2006 .

[17]  D. Bazin,et al.  LISE++ : design your own spectrometer , 2004 .

[18]  K. Blaum,et al.  Mass measurements of neutron-deficient radionuclides near the end-point of the rp-process with SHIPTRAP , 2007 .

[19]  B. Franzke The heavy ion storage and cooler ring project ESR at GSI , 1987 .

[20]  F. Hessberger,et al.  Proton radioactivity of151Lu , 1982 .

[21]  A. Yeremin,et al.  Decay properties of neutron-deficient nuclei in the region Z = 86–92 , 2000 .

[22]  B. A. Brown,et al.  Structure of high spin states in 104Sn: E2 and E3 polarization of the 100Sn core , 1998 .

[23]  L. Schweikhard,et al.  Direct mass measurements around A = 146 at SHIPTRAP , 2007 .

[24]  A. Gavron Statistical model calculations in heavy ion reactions , 1980 .

[25]  K. Blaum,et al.  Towards direct mass measurements of nobelium at SHIPTRAP , 2007 .

[26]  M. Kárný,et al.  Gamow-Teller beta decay of 105Sn , 2006 .

[27]  B. Back,et al.  Startup of the Fragment Mass Analyzer at ATLAS , 1992 .

[28]  M. Poli,et al.  Present status and future aspects of nuclear structure close to Sn-100 - The OSIRIS, NORDBALL-PEX and EUROBALL collaborations , 1997 .

[29]  R. Gernhäuser,et al.  The Super-FRS project at GSI , 2003 .

[30]  D. Bazin,et al.  Development of the program LISE: application to fusion-evaporation , 2003 .

[31]  C. Mazzocchi,et al.  Proton–proton correlations observed in two-proton radioactivity of 94Ag , 2006, Nature.

[32]  Krzysztof Piotr Rykaczewski,et al.  The GSI projectile fragment separator (FRS): A Versatile magnetic system for relativistic heavy ions , 1992 .

[33]  B. A. Brown,et al.  rp-process nucleosynthesis at extreme temperature and density conditions , 1998 .

[34]  M. Berz,et al.  COSY 5.0 — The fifth order code for corpuscular optical systems , 1987 .

[35]  W. Schneider,et al.  Fusion near the threshold: A comparative study of the systems 40Ar + 112, 116, 122sn and 40Ar + 144, 148, 154Sm , 1985 .

[36]  F. Hessberger,et al.  The nuclear structure of heavy-actinide and trans actinide nuclei , 2004 .

[37]  J. L. Blankenship,et al.  Performance of the Recoil Mass Spectrometer and its detector systems at the Holifield Radioactive Ion Beam Facility , 2000 .

[38]  G. Münzenberg,et al.  The velocity filter ship, a separator of unslowed heavy ion fusion products , 1979 .

[39]  D. Bazin,et al.  The program LISE: a simulation of fragment separators , 2002 .

[40]  K. Shima,et al.  Empirical formula for the average equilibrium charge-state of heavy ions behind various foils , 1982 .

[41]  G. Münzenberg,et al.  The discovery of the heaviest elements , 2000 .

[42]  J. Ullrich,et al.  Charge states and energy loss of relativistic heavy ions in matter , 1994 .

[43]  O. Malyshev,et al.  Monte Carlo simulation of ion trajectories in the kinematic recoil separator “VASSILISSA” , 1997 .

[44]  S. Eliseev,et al.  Extraction efficiency and extraction time of the SHIPTRAP gas-filled stopping cell , 2007 .