A mass-energy-conserving discontinuous Galerkin scheme for the isotropic multispecies Rosenbluth-Fokker-Planck equation

Structure-preserving discretization of the Rosenbluth-Fokker-Planck equation is still an open question especially for unlike-particle collision. In this paper, a mass-energy-conserving isotropic Rosenbluth-Fokker-Planck scheme is introduced. The structure related to the energy conservation is skew-symmetry in mathematical sense, and the action-reaction law in physical sense. A thermal relaxation term is obtained by using integration-by-parts on a volume integral of the energy moment equation, so the discontinuous Galerkin method is selected to preserve the skew-symmetry. The discontinuous Galerkin method enables ones to introduce the nonlinear upwind flux without violating the conservation laws. Some experiments show that the conservative scheme maintains the mass-energy-conservation only with round-off errors, and analytic equilibria are reproduced only with truncation errors of its formal accuracy.

[1]  Colin P. Williams,et al.  Fast Quantum Algorithms for Numerical Integrals and Stochastic Processes , 1999 .

[2]  Christophe Buet,et al.  About positive, energy conservative and equilibrium state preserving schemes for the isotropic Fokker-Planck-Landau equation , 2006 .

[3]  Luis Chacon,et al.  A fully implicit, scalable, conservative nonlinear relativistic Fokker-Planck 0D-2P solver for runaway electrons , 2020, Comput. Phys. Commun..

[4]  Christophe Buet,et al.  Positive, conservative, equilibrium state preserving and implicit difference schemes for the isotropic Fokker-Planck-Landau equation , 2007 .

[5]  Eero Hirvijoki,et al.  Conservative discretization of the Landau collision integral , 2016 .

[6]  M. F. O'REILLY,et al.  On Mass , 1897, Nature.

[7]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[8]  Mohammed Lemou Numerical Algorithms for Axisymmetric Fokker—Planck—Landau Operators , 2000 .

[9]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[10]  Chi-Wang Shu,et al.  Runge-Kutta Discontinuous Galerkin Method Using WENO Limiters , 2005, SIAM J. Sci. Comput..

[11]  ShuChi-Wang,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes, II , 1989 .

[12]  Graeme Smith,et al.  Quantum algorithm for the Vlasov equation , 2019, Physical Review A.

[13]  Luis Chacón,et al.  An adaptive, implicit, conservative, 1D-2V multi-species Vlasov-Fokker-Planck multi-scale solver in planar geometry , 2017, J. Comput. Phys..

[14]  Yasuhiko Sentoku,et al.  Structure-preserving strategy for conservative simulation of the relativistic nonlinear Landau-Fokker-Planck equation. , 2019, Physical review. E.

[15]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[16]  Tim Ridgway Be Positive! , 2015, South Dakota medicine : the journal of the South Dakota State Medical Association.

[17]  M. Pekker,et al.  Conservative difference schemes for the Fokker-Planck equation , 1984 .

[18]  George H. Miley,et al.  An implicit energy-conservative 2D Fokker-Planck algorithm: II. Jacobian-free Newton—Krylov solver , 2000 .

[19]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2 D Fokker – Planck Algorithm I . Difference Scheme , 1999 .

[20]  Stéphane Cordier,et al.  Conservative and Entropy Decaying Numerical Scheme for the Isotropic Fokker-Planck-Landau Equation , 1998 .

[21]  Pierre Degond,et al.  Fast Algorithms for Numerical, Conservative, and Entropy Approximations of the Fokker-Planck-Landau Equation , 1997 .

[22]  Pierre Degond,et al.  An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory , 1994 .

[23]  Y. Berezin,et al.  Conservative finite-difference schemes for the Fokker-Planck equations not violating the law of an increasing entropy , 1987 .

[24]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[25]  D. A. Knoll,et al.  An Implicit Energy-Conservative 2D Fokker—Planck Algorithm , 2000 .

[26]  Luis Chacón,et al.  A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation , 2015, J. Comput. Phys..

[27]  Soon‐Yeong Chung,et al.  Positive , 2020, Definitions.

[28]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[29]  Eero Hirvijoki Conservative finite-element method for the relativistic Coulomb collision operator. , 2019 .

[30]  Jianxian Qiu,et al.  Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one-dimensional case , 2004 .

[31]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[32]  Luis Chacón,et al.  An adaptive, conservative 0D-2V multispecies Rosenbluth-Fokker-Planck solver for arbitrarily disparate mass and temperature regimes , 2016, J. Comput. Phys..

[33]  Luis Chacón,et al.  An equilibrium-preserving discretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary multi-dimensional geometry , 2017, J. Comput. Phys..