Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View

We use the multi-epoch radial velocities acquired by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to perform a large-scale statistical study of stellar multiplicity for field stars in the Milky Way, spanning the evolutionary phases between the main sequence (MS) and the red clump. We show that the distribution of maximum radial velocity shifts (ΔRVmax) for APOGEE targets is a strong function of log g, with MS stars showing ΔRVmax as high as ∼300 , and steadily dropping down to ∼30 for log g ∼ 0, as stars climb up the red giant branch (RGB). Red clump stars show a distribution of ΔRVmax values comparable to that of stars at the tip of the RGB, implying they have similar multiplicity characteristics. The observed attrition of high ΔRVmax systems in the RGB is consistent with a lognormal period distribution in the MS and a multiplicity fraction of 0.35, which is truncated at an increasing period as stars become physically larger and undergo mass transfer after Roche Lobe overflow during H-shell burning. The ΔRVmax distributions also show that the multiplicity characteristics of field stars are metallicity-dependent, with metal-poor ([Fe/H] ≲ −0.5) stars having a multiplicity fraction a factor of 2–3 higher than metal-rich ([Fe/H] ≳ 0.0) stars. This has profound implications for the formation rates of interacting binaries observed by astronomical transient surveys and gravitational wave detectors, as well as the habitability of circumbinary planets.

[1]  H. Rix,et al.  Discovery and characterization of 3000+ main-sequence binaries from APOGEE spectra , 2017, 1711.08793.

[2]  Ghina M. Halabi,et al.  Binary stars in the Galactic thick disc , 2017, 1709.05237.

[3]  H. Rix,et al.  Signatures of unresolved binaries in stellar spectra: implications for spectral fitting , 2017, 1709.03983.

[4]  Sergey E. Koposov,et al.  The Gaia-ESO Survey: double, triple and quadruple-line spectroscopic binary candidates , 2017, 1707.01720.

[5]  Jonathan C. Tan,et al.  IN-SYNC VI. Identification and Radial Velocity Extraction for 100+ Double-Lined Spectroscopic Binaries in the APOGEE/IN-SYNC Fields , 2017, 1706.01161.

[6]  J. Bovy,et al.  The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment , 2017, 1706.00009.

[7]  Shuang Gao,et al.  The binarity of Galactic dwarf stars along with effective temperature and metallicity , 2017, 1703.10305.

[8]  Aniruddha R. Thakar,et al.  Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe , 2017, 1703.00052.

[9]  Daniel Foreman-Mackey,et al.  The Joker: A Custom Monte Carlo Sampler for Binary-star and Exoplanet Radial Velocity Data , 2016, 1610.07602.

[10]  L. Girardi Red Clump Stars , 2016 .

[11]  D. Maoz,et al.  The binary fraction, separation distribution, and merger rate of white dwarfs from SPY , 2016, 1609.02156.

[12]  Keivan G. Stassun,et al.  The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.

[13]  Warren R. Brown,et al.  TODAY A DUO, BUT ONCE A TRIO? THE DOUBLE WHITE DWARF HS 2220+2146 MAY BE A POST-BLUE STRAGGLER BINARY , 2016, 1607.00344.

[14]  M. Moe,et al.  Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars , 2016, 1606.05347.

[15]  Avi Shporer,et al.  RADIAL VELOCITY MONITORING OF KEPLER HEARTBEAT STARS , 2016, 1606.02723.

[16]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[17]  A. Jorissen,et al.  Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers , 2016, 1603.08992.

[18]  D. A. García-Hernández,et al.  COMPANIONS TO APOGEE STARS. I. A MILKY WAY-SPANNING CATALOG OF STELLAR AND SUBSTELLAR COMPANION CANDIDATES AND THEIR DIVERSE HOSTS , 2016, 1601.00688.

[19]  H. Harris,et al.  WIYN OPEN CLUSTER STUDY. XXXII. STELLAR RADIAL VELOCITIES IN THE OLD OPEN CLUSTER NGC 188 , 2015, 1512.04983.

[20]  H. Rix,et al.  SPECTROSCOPIC DETERMINATION OF MASSES (AND IMPLIED AGES) FOR RED GIANTS , 2015, 1511.08204.

[21]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[22]  R. Mathieu,et al.  IMPLICATIONS FOR THE FORMATION OF BLUE STRAGGLER STARS FROM HST ULTRAVIOLET OBSERVATIONS OF NGC 188 , 2015, 1510.04290.

[23]  R. Mathieu,et al.  WIYN OPEN CLUSTER STUDY. LXVI. SPECTROSCOPIC BINARY ORBITS IN THE YOUNG OPEN CLUSTER M35 (NGC 2168) , 2015 .

[24]  S. D. Mink,et al.  MERGER RATES OF DOUBLE NEUTRON STARS AND STELLAR ORIGIN BLACK HOLES: THE IMPACT OF INITIAL CONDITIONS ON BINARY EVOLUTION PREDICTIONS , 2015, 1506.03573.

[25]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[26]  D. Schneider,et al.  RAPID ROTATION OF LOW-MASS RED GIANTS USING APOKASC: A MEASURE OF INTERACTION RATES ON THE POST-MAIN-SEQUENCE , 2015, 1505.03536.

[27]  M. Mateo,et al.  Bayesian analysis of resolved stellar spectra: application to MMT/Hectochelle observations of the Draco dwarf spheroidal , 2015, 1503.02589.

[28]  Anna Y. Q. Ho,et al.  THE CANNON: A DATA-DRIVEN APPROACH TO STELLAR LABEL DETERMINATION , 2015, 1501.07604.

[29]  T. Beers,et al.  STATISTICAL TIME-RESOLVED SPECTROSCOPY: A HIGHER FRACTION OF SHORT-PERIOD BINARIES FOR METAL-RICH F-TYPE DWARFS IN SDSS , 2015, 1501.04962.

[30]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[31]  Scott W. Fleming,et al.  THE DATA REDUCTION PIPELINE FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2015, 1501.03742.

[32]  Yuehua Wu,et al.  STELLAR LOCI II. A MODEL-FREE ESTIMATE OF THE BINARY FRACTION FOR FIELD FGK STARS , 2014, 1412.1233.

[33]  N. Ivanova,et al.  Mass transfer from giant donors , 2014, 1410.5109.

[34]  T. Beers,et al.  THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS , 2014, 1410.2503.

[35]  Jonathan C. Tan,et al.  IN-SYNC I: HOMOGENEOUS STELLAR PARAMETERS FROM HIGH-RESOLUTION APOGEE SPECTRA FOR THOUSANDS OF PRE-MAIN SEQUENCE STARS , 2014, 1408.7113.

[36]  Chao Liu,et al.  THE BINARITY OF MILKY WAY F,G,K STARS AS A FUNCTION OF EFFECTIVE TEMPERATURE AND METALLICITY , 2014, 1405.7105.

[37]  M. Bate The statistical properties of stars and their dependence on metallicity: the effects of opacity , 2014, 1405.5583.

[38]  Lars Koesterke,et al.  THE APOGEE RED-CLUMP CATALOG: PRECISE DISTANCES, VELOCITIES, AND HIGH-RESOLUTION ELEMENTAL ABUNDANCES OVER A LARGE AREA OF THE MILKY WAY'S DISK , 2014, 1405.1032.

[39]  T. O. S. University,et al.  Stellar mergers are common , 2014, 1405.1042.

[40]  R. G. Izzard,et al.  Theoretical uncertainties of the Type Ia supernova rate , 2014, 1401.2895.

[41]  L. Aguilar,et al.  Habitable zones with stable orbits for planets around binary systems , 2014, 1401.1006.

[42]  Filippo Mannucci,et al.  Observational Clues to the Progenitors of Type Ia Supernovae , 2013, 1312.0628.

[43]  K. Hodapp,et al.  New visual companions of solar-type stars within 25 pc , 2013, 1310.2684.

[44]  M. Moe,et al.  THE CLOSE BINARY PROPERTIES OF MASSIVE STARS IN THE MILKY WAY AND LOW-METALLICITY MAGELLANIC CLOUDS , 2013, 1309.3532.

[45]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[46]  Michael J. Kurtz,et al.  THE CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES OVER THE LAST 11 BILLION YEARS , 2013, 1303.5987.

[47]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[48]  J. Lombardi,et al.  Identification of the Long-Sought Common-Envelope Events , 2013, Science.

[49]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[50]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[51]  D. Maoz,et al.  CHARACTERIZING THE GALACTIC WHITE DWARF BINARY POPULATION WITH SPARSELY SAMPLED RADIAL VELOCITY DATA , 2012, 1202.5467.

[52]  D. Maoz,et al.  THE MERGER RATE OF BINARY WHITE DWARFS IN THE GALACTIC DISK , 2012, 1202.5472.

[53]  R. Mathieu,et al.  WIYN OPEN CLUSTER STUDY. XLVIII. THE HARD-BINARY POPULATION OF NGC 188 , 2011, 1111.3950.

[54]  A. Helmi,et al.  SINGLE-LINED SPECTROSCOPIC BINARY STAR CANDIDATES IN THE RAVE SURVEY , 2011, 1105.1673.

[55]  P. Kroupa,et al.  The initial period function of late-type binary stars and its variation , 2011, 1102.1719.

[56]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[57]  John Asher Johnson,et al.  Giant Planet Occurrence in the Stellar Mass-Metallicity Plane , 2010, 1005.3084.

[58]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[59]  K. Omukai,et al.  Binary formation with different metallicities: Dependence on initial conditions , 2009, 0907.3257.

[60]  Heidi Jo Newberg,et al.  SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH g = 14–20 , 2009, 0902.1781.

[61]  M. Machida Binary Formation in Star-forming Clouds with Various Metallicities , 2008, 0802.4380.

[62]  C. Aerts,et al.  Precise radial velocities of giant stars. IV. A correlation between surface gravity and radial veloc , 2008, 0801.0741.

[63]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[64]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[65]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[66]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[67]  S. Udry,et al.  Tertiary Companions to Close Spectroscopic Binaries , 2006, astro-ph/0601518.

[68]  C. Lada Stellar Multiplicity and the Initial Mass Function: Most Stars Are Single , 2006, astro-ph/0601375.

[69]  Simon P. Goodwin Pavel Kroupa Limits on the primordial stellar multiplicity , 2005, astro-ph/0505470.

[70]  S. Meibom,et al.  A Robust Measure of Tidal Circularization in Coeval Binary Populations: The Solar-Type Spectroscopic Binary Population in the Open Cluster M35 , 2004, astro-ph/0412147.

[71]  J. B. Laird,et al.  A Survey of Proper-Motion Stars. XVII. A Deficiency of Binary Stars on Retrograde Galactic Orbits and the Possibility that ω Centauri is Related to the Effect , 2004, astro-ph/0412111.

[72]  C. Melo The short period multiplicity among T Tauri stars , 2003 .

[73]  Bruce W. Carney,et al.  A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries , 2002 .

[74]  P. Kroupa,et al.  On the Origin of the Distribution of Binary Star Periods , 2001, astro-ph/0103429.

[75]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[76]  J. B. Laird,et al.  Spectroscopic Binaries, Velocity Jitter, and Rotation in Field Metal-poor Red Giant and Red Horizontal-Branch Stars , 2003 .