Chemistry of Synthetic Models Relevant to the Active Sites of Molybdenum and Tungsten Containing Enzymes

Recent advance of bioinspired coordination chemistry of molybdenum and tungsten ions has been reviewed. New synthetic methods to modeling uncommon core structures, sulfido and oxo-sulfido metal centers, involved in molybdenum and tungsten enzyme active sites have been discussed. Reactivity in proton-coupled electron transfer of the model compounds also is included.

[1]  H. Sugimoto,et al.  Synthesis and Characterization of Bis(dithiolene) Tungsten(VI), -(V), and -(IV) Complexes and Their Reactivities in Coupled Electron–Proton Transfer: A New Series of Active Site Models of Tungstoenzymes , 2007 .

[2]  H. Sugimoto,et al.  In situ generation of oxo-sulfidobis(dithiolene)tungsten(VI) complexes: active-site models for the aldehyde ferredoxin oxidoreductase family of tungsten enzymes. , 2007, Inorganic chemistry.

[3]  R. H. Holm,et al.  Synthesis of structural analogues of the oxidized sites in the xanthine oxidoreductase enzyme family. , 2007, Journal of the American Chemical Society.

[4]  R. H. Holm,et al.  Synthesis and structures of bis(dithiolene)tungsten(IV,VI) thiolate and selenolate complexes: approaches to the active sites of molybdenum and tungsten formate dehydrogenases. , 2007, Inorganic chemistry.

[5]  Csaba Paizs,et al.  Investigation of the mechanism of action of pyrogallol-phloroglucinol transhydroxylase by using putative intermediates. , 2007, Chemistry.

[6]  J. McCleverty Metal 1,2-Dithiolene and Related Complexes , 2007 .

[7]  G. Ullmann,et al.  Structure of the non-redox-active tungsten/[4Fe:4S] enzyme acetylene hydratase , 2007, Proceedings of the National Academy of Sciences.

[8]  C. G. Young,et al.  Synthesis, characterization, and biomimetic chemistry of cis-oxosulfidomolybdenum(VI) complexes stabilized by an intramolecular Mo(O)=S...S interaction. , 2007, Inorganic chemistry.

[9]  H. Sugimoto,et al.  Bis(dithiolene) Molybdenum Complex that Promotes Combined Coupled Electron–Proton Transfer and Oxygen Atom Transfer Reactions: A Water‐Active Model of the Arsenite Oxidase Molybdenum Center , 2006 .

[10]  M. Piles,et al.  Unusual oxidation of phosphines employing water as the oxygen atom source and tris(benzene-1,2-dithiolate)molybdenum(VI) as the oxidant. A functional molybdenum hydroxylase analogue system. , 2006, Inorganic chemistry.

[11]  M. Romão,et al.  Formate-reduced E. coli formate dehydrogenase H: the reinterpretation of the crystal structure suggests a new reaction mechanism , 2006, JBIC Journal of Biological Inorganic Chemistry.

[12]  H. Sugimoto,et al.  Reversible sulfurization-desulfurization of tungsten bis(dithiolene) complexes. , 2006, Angewandte Chemie.

[13]  S. Sarkar,et al.  Chemistry of [Et4N][MoIV(SPh)(PPh3)(mnt)2] as an analogue of dissimilatory nitrate reductase with its inactivation on substitution of thiolate by chloride. , 2006, Journal of the American Chemical Society.

[14]  R. H. Holm,et al.  Analogue reaction systems of selenate reductase. , 2006, Inorganic chemistry.

[15]  C. G. Young,et al.  Paramagnetic active site models for the molybdenum-copper carbon monoxide dehydrogenase. , 2006, Journal of the American Chemical Society.

[16]  Hitoshi Yamamoto,et al.  O-atom-transfer oxidation of [molybdenum(IV) oxo{3,6-(acylamino)2- 1,2-benzenedithiolato}2]2- promoted by intramolecular NH...S hydrogen bonds. , 2006, Inorganic chemistry.

[17]  C. G. Young,et al.  Models for the molybdenum hydroxylases: synthesis, characterization and reactivity of cis-oxosulfido-Mo(VI) complexes. , 2006, Journal of the American Chemical Society.

[18]  C. G. Young,et al.  Synthesis and characterisation of second-generation metallodithiolene complexes of the type [Tp*ME(dithiolene)](M=Mo, W; E=O, S) and a novel 'organoscorpionate' complex of tungsten. , 2005, Dalton transactions.

[19]  H. Sugimoto,et al.  A new series of molybdenum-(IV), -(V), and -(VI) dithiolate compounds as active site models of molybdoenzymes: preparation, crystal structures, spectroscopic/electrochemical properties and reactivity in oxygen atom transfer. , 2005, Dalton transactions.

[20]  H. Sugimoto,et al.  Mononuclear five-coordinate molybdenum(IV) and -(V) monosulfide complexes coordinated with dithiolene ligands: reversible redox of Mo(V)/Mo(IV) and irreversible dimerization of [MoVS]- cores to a dinuclear [MoV2(mu-S)2]2- Core. , 2005, Inorganic Chemistry.

[21]  K. Sugimoto,et al.  Dioxo-molybdenum(VI) and mono-oxo-molybdenum(IV) complexes supported by new aliphatic dithiolene ligands: new models with weakened Mo=O bond characters for the arsenite oxidase active site. , 2005, Inorganic chemistry.

[22]  Y. Ohki,et al.  Sulfido-bridged dinuclear molybdenum-copper complexes related to the active site of CO dehydrogenase: [(dithiolate)Mo(O)S2Cu(SAr)]2- (dithiolate = 1,2-S2C6H4, 1,2-S2C6H2-3,6-Cl2, 1,2-S2C2H4). , 2005, Inorganic chemistry.

[23]  C. Schulzke Temperature dependent electrochemical investigations of molybdenum and tungsten oxobisdithiolene complexes. , 2005, Dalton transactions.

[24]  R. H. Holm,et al.  Reaction systems related to dissimilatory nitrate reductase: nitrate reduction mediated by bis(dithiolene)tungsten complexes. , 2005, Inorganic chemistry.

[25]  A. Messerschmidt,et al.  Crystal structure of pyrogallol-phloroglucinol transhydroxylase, an Mo enzyme capable of intermolecular hydroxyl transfer between phenols. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Huber,et al.  Active site geometry and substrate recognition of the molybdenum hydroxylase quinoline 2-oxidoreductase. , 2004, Structure.

[27]  E. Pai,et al.  The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Maher,et al.  X-ray absorption spectroscopy of selenate reductase. , 2004, Inorganic chemistry.

[29]  Michael K. Johnson Vibrational Spectra of Dithiolene Complexes , 2004 .

[30]  E. Stiefel,et al.  Structures and Structural Trends in Homoleptic Dithiolene Complexes , 2004 .

[31]  M. Adams,et al.  Characterization of a Fourth Tungsten-Containing Enzyme from the Hyperthermophilic Archaeon Pyrococcus furiosus , 2002, Journal of bacteriology.

[32]  R. Huber,et al.  Catalysis at a dinuclear [CuSMo(O)OH] cluster in a CO dehydrogenase resolved at 1.1-Å resolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Huber,et al.  Gene sequence and the 1.8 A crystal structure of the tungsten-containing formate dehydrogenase from Desulfovibrio gigas. , 2002, Structure.

[34]  R. Prince,et al.  The active site of arsenite oxidase from Alcaligenes faecalis. , 2002, Journal of the American Chemical Society.

[35]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[36]  S. Mondal,et al.  An analogue system displaying all the important processes of the catalytic cycles involving monooxomolybdenum(VI) and desoxomolybdenum(IV) centers. , 2002, Journal of the American Chemical Society.

[37]  B. Lim,et al.  Monodithiolene molybdenum(V, VI) complexes: a structural analogue of the oxidized active site of the sulfite oxidase enzyme family. , 2001, Journal of the American Chemical Society.

[38]  C. G. Young,et al.  Synthesis, characterization, and electrochemistry of cis-oxothio- and cis-bis(thio)tungsten(VI) complexes of hydrotris(3,5-dimethylpyrazol-1-yl)borate. , 2001, Inorganic chemistry.

[39]  K. Tatsumi,et al.  Synthesis of a Cp* Complex of Tungsten with Three Different Chalcogenido (O2−, S2−, and Se2−) Ligands , 2001 .

[40]  B. Lim,et al.  Bis(dithiolene)molybdenum analogues relevant to the DMSO reductase enzyme family: synthesis, structures, and oxygen atom transfer reactions and kinetics. , 2001, Journal of the American Chemical Society.

[41]  M. Hidai,et al.  Preparation of mononuclear tungsten tris(sulfido) and molybdenum sulfido-tetrasulfido complexes with hydridotris(pyrazolyl)borate coligand and conversion of the former into sulfido-bridged bimetallic complex having Pt(mu-S)2WS core. , 2001, Inorganic chemistry.

[42]  P. Kuhn,et al.  Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A. , 2001, Structure.

[43]  B. Lim,et al.  Structural and Functional Bis(dithiolene)-Molybdenum/Tungsten Active Site Analogues of the Dimethylsulfoxide Reductase Enzyme Family , 2000 .

[44]  R. H. Holm,et al.  Oxo/sulfidotungstate(VI) as precursors to W(VI)O2, W(VI)OS, and W(VI)S2 complexes and W(IV)-dithiolene chelate rings. , 2000, Inorganic chemistry.

[45]  A. Smith,et al.  Toward a Total Model for the Molybdenum Hydroxylases: Synthesis, Redox, and Biomimetic Chemistry of Oxo-thio-Mo(VI) and -Mo(V) Complexes , 2000 .

[46]  B. Lim,et al.  Synthesis and structures of bis(dithiolene)molybdenum complexes related to the active sites of the DMSO reductase enzyme family. , 2000, Inorganic chemistry.

[47]  K. Hodgson,et al.  The Unperturbed Oxo-Sulfido Functional Group cis-Mo(VI)OS, Related to that in the Xanthine Oxidase Family of Molybdoenzymes: Synthesis, Structural Characterization and Reactivity Aspects , 1999 .

[48]  D. Rees,et al.  Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus: the 1.85 A resolution crystal structure and its mechanistic implications. , 1999, Journal of molecular biology.

[49]  E. Stiefel,et al.  Ligand and Tetrathiometalate Effects in Induced Internal Electron Transfer Reactions. , 1999, Inorganic chemistry.

[50]  R. Huber,et al.  Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. , 1999, Structure.

[51]  R. H. Holm,et al.  Synthesis, Structures, and Reactivity of Bis(dithiolene)molybdenum(IV,VI) Complexes Related to the Active Sites of Molybdoenzymes , 1998 .

[52]  G. Giordano,et al.  Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution. , 1998, Journal of molecular biology.

[53]  E. Nordlander,et al.  Synthesis, Structures and Oxo Transfer Reactivity of bis(Dithiolene) Tungsten(IV,VI) Complexes Related to the Active Sites of Tungstoenzymes , 1998 .

[54]  D. Rees,et al.  Molecular Basis of Sulfite Oxidase Deficiency from the Structure of Sulfite Oxidase , 1997, Cell.

[55]  J. Lang,et al.  A New Entry into Molybdenum/Tungsten Sulfur Chemistry: Synthesis and Reactions of Mononuclear Sulfido Complexes of Pentamethylcyclopentadienyl−Molybdenum(VI) and −Tungsten(VI) , 1997 .

[56]  N. Ueyama,et al.  Association of Oxo-Molybdenum Dithiolene Complexes with a Multiamide Additive and Its Influence on the Ease of O-Atom Transfer. , 1997, Inorganic chemistry.

[57]  V. Gladyshev,et al.  Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo, Molybdopterin, Selenocysteine, and an Fe4S4 Cluster , 1997, Science.

[58]  D. Collison,et al.  Synthesis of oxomolybdenum bis(dithiolene) complexes related to the cofactor of the oxomolybdoenzymes , 1997 .

[59]  C. G. Young,et al.  A Catalytic Cycle Related to Molybdenum Enzymes Containing [MoVIO2]2+ Oxidized Active Sites , 1996 .

[60]  G. Taubes Atomic Mouse Probes the Lifetime of a Quantum Cat , 1996, Science.

[61]  C. G. Young,et al.  Oxygen Atom Transfer, Sulfur Atom Transfer, and Correlated Electron−Nucleophile Transfer Reactions of Oxo- and Thiomolybdenum(IV) Complexes: Synthesis of Oxothiomolybdenum(VI) and (Hydroxo)oxomolybdenum(V) Species , 1996 .

[62]  D. Rees,et al.  Crystal Structure of DMSO Reductase: Redox-Linked Changes in Molybdopterin Coordination , 1996, Science.

[63]  Samar K. Das,et al.  Modeling the tungsten sites of inactive and active forms of hyperthermophilic Pyrococcus furiosus aldehyde ferredoxin oxidoreductase , 1996 .

[64]  T. Okamura,et al.  Trans influence of oxo and dithiolene coordination of oxidized models of molybdenum oxidoreductase: Synthesis, structures, and properties of Q{sub 2}[Mo{sup VI}O{sub 2}(1,2-benzenedithiolato){sub 2}] (Q = NEt{sub 4}, PPh{sub 4}) and related complexes , 1996 .

[65]  Robert Huber,et al.  Crystal Structure of the Xanthine Oxidase-Related Aldehyde Oxido-Reductase from D. gigas , 1995, Science.

[66]  S. Tucker,et al.  Enthalpies of combustion of 4-nitropyridineN-oxide and pyridine-3-carboxylic acidN-oxide: the dissociation enthalpies of the N—O bonds in pyridineN-oxide derivatives , 1995 .

[67]  D. Rees,et al.  Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase , 1995, Science.

[68]  Samar K. Das,et al.  Modeling for the Active Site of Sulfite Oxidase: Synthesis, Characterization, and Reactivity of [MoVIO2(mnt)2]2- (mnt2- = 1,2-Dicyanoethylenedithiolate) , 1994 .

[69]  C. G. Young,et al.  Tungsten Bioinorganic Chemistry: Synthesis, Structure, and Reactivity of cis-Oxothiotungsten(VI), cis-Bis(thio)tungsten(VI), and (Ene-1,2-dithiolato)tungsten(IV) Complexes , 1994 .

[70]  C. Simonnet-Jégat,et al.  Evidence of the W(O)(S2)2 core as an intermediate in the acidification of WS42−. Structural characterization of W(O)(S2)2(bpy) and W(O)(S2)2(phen) , 1994 .

[71]  N. Ueyama,et al.  Oxygen atom transfer systems in which the .mu.-oxodimolybdenum(V) complex formation does not occur: syntheses, structures, and reactivities of monooxomolybdenum(IV) benzenedithiolato complexes as models of molybdenum oxidoreductases , 1994 .

[72]  R. H. Holm,et al.  A Thermodynamic Scale for Oxygen Atom Transfer Reactions , 1993 .

[73]  C. G. Young,et al.  A SINGLE MODEL DISPLAYING ALL THE IMPORTANT CENTERS AND PROCESSES INVOLVED IN CATALYSIS BY MOLYBDOENZYMES CONTAINING [MOVIO2]2 ACTIVE-SITES , 1992 .

[74]  N. Ueyama,et al.  cis-Dioxobis(benzenedithiolato)tungsten(VI) and the related monooxotungsten(V) and -(IV) complexes. Models of tungsten oxidoreductases , 1992 .

[75]  A. Salifoglou,et al.  Studies of the reactivity of binary thio- and tertiary oxothiomolybdates toward electrophiles. Reactions with dicarbomethoxyacetylene and the synthesis and structures of the [Et4N2[MoO(L)2], anti-[Et4N]2[Mo2O2S2(L)2]], syn-[Ph4P]2[Mo2O2S2(L)2].cntdot.2DMF, Ph4P]2[Mo(L)3]DMF.cntdot.C6H6, and [Ph4P]2[ , 1991 .

[76]  T. Okamura,et al.  Synthesis and Crystal Structure of a cis-Dioxomolybdenum(VI) Complex with Two Benzenedithiolato Ligands. (NEt4)2[MoVIO2(1,2-benzenedithiolato)2] , 1990 .

[77]  R. Kucharczyk,et al.  Preparation and reactions of sulfido and persulfido complexes of (pentamethylcyclopentadienyl)tungsten , 1990 .

[78]  R. H. Holm The biologically relevant oxygen atom transfer chemistry of molybdenum: from synthetic analogue systems to enzymes , 1990 .

[79]  J. W. Faller,et al.  A mononuclear oxosulfidomolybdenum(VI) complex and other oxo, sulfido, and .eta.2-S2O derivatives of (pentamethylcyclopentadienyl)molybdenum and - tungsten , 1989 .

[80]  Richard H. Holm,et al.  Metal-centered oxygen atom transfer reactions , 1987 .

[81]  S. Sarkar,et al.  Synthesis and characterization of a mononuclear Mo(IV) oxo complex (Et4N)2 [MoO(S2C2(COPh)2)2] , 1987 .

[82]  K. Nicholas,et al.  Preparation and molecular structure of [1,2-bis(diphenylphosphino)ethane][dicyanoethenedithiolato]oxomolybdenum.acetone and its possible relevance to the active site of oxo-transfer molybdoenzymes , 1987 .

[83]  C. G. Young,et al.  Mononuclear oxo- and sulfidomolybdenum(IV) complexes: syntheses and crystal structures of [HB(Me2C3N2H)3]MoE(S2CNEt2) (E = O, S) and related complexes , 1987 .

[84]  W. Pieńkowski,et al.  Synthesis and X-Ray Structural Characterization of WO(S2)(S2CNEt2)2 and Related Complexes , 1987 .

[85]  S. Boyde,et al.  Structural comparison of oxobis(benzene-1,2-dithiolato)molybdenum-(V) and -(IV) complexes , 1986 .

[86]  D. Collison,et al.  Crystal structure of the complex cis-oxobis[piperidine N-oxido(1–)-NO]thiomolybdenum(VI), containing a cis-MoOS2+ group , 1983 .

[87]  D. Coucouvanis,et al.  The formation of perthiocarbonate ligands following the addition of CS2 to binary molybdenum-sulfur complexes. The crystal and molecular structures of the (Ph4P)2[(CS4)2MoS].DMF and (Ph4P)2[(CS4)Mo2S4(CS4)].1/2DMF complexes , 1982 .