Extreme ultra-low lasing threshold of full-polymeric fundamental microdisk printed with room-temperature atmospheric ink-jet technique

We experimentally demonstrated an extreme ultra-low lasing threshold from full-polymeric fundamental microdisk cavities fabricated by a novel fabrication method, the ink-jet printing method, which is much simpler and easier than previous methods such as lithography. The ink-jet printing method provides additive, room-temperature atmospheric, rapid fabrication with only two steps: (i) stacking cladding pedestal and waveguiding disk spots using the ink-jet technique, and (ii) partial etching of the cladding pedestal envelope. Two kinds of low-viscosity polymers successfully formed microdisks with high surface homogeneity, and one of the polymers doped with LDS798 dye yielded whispering-gallery-mode lasing. The fundamental disks exhibited an extremely ultra-low lasing threshold of 0.33 μJ/mm2 at a wavelength of 817.3 nm. To the best of our knowledge, this lasing threshold is the lowest threshold obtained among both organic and inorganic fundamental microdisk cavity lasers with a highly confined structure.

[1]  James B. Cole,et al.  High-accuracy Yee algorithm based on nonstandard finite differences: new developments and verifications , 2002 .

[2]  M. Haraguchi,et al.  Nonlinear trimer resonators for compact ultra-fast switching. , 2009, Optics express.

[3]  C. Hansen,et al.  The three dimensional solubility parameter - key to paint component affinities: I. Solvents, plasticizers, polymers, and resins , 1967 .

[4]  Robert P. H. Chang,et al.  Detection of chemical species using ultraviolet microdisk lasers , 2004 .

[5]  Sang-Yeon Cho,et al.  A Polymer Microdisk Photonic Sensor Integrated Onto Silicon , 2006, IEEE Photonics Technology Letters.

[6]  Naoki Okada,et al.  Simulation of whispering gallery modes in the Mie regime using the nonstandard finite-difference time domain algorithm , 2010 .

[7]  K. Vahala,et al.  Ultralow-threshold erbium-implanted toroidal microlaser on silicon , 2004 .

[8]  T. Shi,et al.  Intrinsic viscosity of polymers: From linear chains to dendrimers , 2012 .

[9]  Hsiu-Sheng Hsu,et al.  Ultra-low-threshold Er:Yb sol-gel microlaser on silicon. , 2009, Optics express.

[10]  K. Vahala,et al.  Ultralow-threshold Raman laser using a spherical dielectric microcavity , 2002, Nature.

[11]  Naoki Okada,et al.  Nonstandard Finite Difference Time Domain Algorithm for Berenger’s Perfectly Matched Layer , 2011 .

[12]  Jordi Martorell,et al.  Whispering-gallery-mode phase matching for surface second-order nonlinear optical processes in spherical microresonators , 2008 .

[13]  Kenneth T. V. Grattan,et al.  Characteristics of Er and Er–Yb–Cr doped phosphate microsphere fibre lasers , 2009 .

[14]  J E Heebner,et al.  Sensitive disk resonator photonic biosensor. , 2001, Applied optics.

[15]  Kerry J Vahala,et al.  Yb-doped glass microcavity laser operation in water. , 2009, Optics letters.

[16]  Christoph Vannahme,et al.  High-Q conical polymeric microcavities , 2010 .

[17]  I. Hutchings,et al.  Printed photonic arrays from self-organized chiral nematic liquid crystals , 2012 .

[18]  Simone Schleede,et al.  Direct laser writing for active and passive high-Q polymer microdisks on silicon. , 2011, Optics express.

[19]  Kerry J. Vahala,et al.  Ultralow threshold on-chip microcavity nanocrystal quantum dot lasers , 2006 .

[20]  Low-threshold conical microcavity dye lasers , 2010 .

[21]  J. Ward,et al.  A Taper-Fused Microspherical Laser Source , 2008, IEEE Photonics Technology Letters.

[22]  G. Massey,et al.  Generation of frequency-controlled nanosecond and picosecond optical pulses by high-gain parametric amplification , 1976 .

[23]  Chen Chen,et al.  Single- and Dual-Wavelength Fiber Ring Laser Using Fiber Microdisk Resonator , 2010, IEEE Photonics Technology Letters.

[24]  L.J. Guo,et al.  Polymer microring resonators for biochemical sensing applications , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  Mehmet Bayindir,et al.  Ultralow threshold laser action from toroidal polymer microcavity , 2009 .

[26]  L.J. Guo,et al.  Optical sensors based on active microcavities , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Kebin Shi,et al.  Single nanoparticle detection using split-mode microcavity Raman lasers , 2014, Proceedings of the National Academy of Sciences.

[28]  Mitsunori Saito,et al.  Deformable Microdroplet Cavity Fabricated by an Inkjet Method , 2010 .

[29]  Dominik F. Floess,et al.  Strongly confined, low-threshold laser modes in organic semiconductor microgoblets. , 2011, Optics express.

[30]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[31]  M. Gorodetsky,et al.  Ultimate Q of optical microsphere resonators. , 1996, Optics letters.

[32]  Bing Zhu,et al.  Reversible All-Optical Modulation Based on Evanescent Wave Absorption of a Single-Mode Fiber With Azo-Polymer Overlay , 2010, IEEE Photonics Technology Letters.

[33]  Lan Yang,et al.  Highly Unidirectional Emission and Ultralow‐Threshold Lasing from On‐Chip Ultrahigh‐Q Microcavities , 2012, Advanced materials.