Statistical Methods in Medical Research Data Mining and Electroencephalography

An overview of data mining (DM) and its application to the analysis of DM and electroencephalography (EEG) is given by: (i) presenting a working definition of DM, (ii) motivating why EEG analysis is a challenging field of application for DM technology and (iii) by reviewing exemplary work on DM applied to EEG analysis. The current status of work on DM and EEG is discussed and some general conclusions are drawn.

[1]  Blake W. Johnson,et al.  High-density mapping in an N400 paradigm: evidence for bilateral temporal lobe generators , 2000, Clinical Neurophysiology.

[2]  Karl Rihaczek,et al.  1. WHAT IS DATA MINING? , 2019, Data Mining for the Social Sciences.

[3]  M Leodolter,et al.  Cortical activity of good and poor spatial test performers during spatial and verbal processing studied with Slow Potential Topography. , 1997, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[4]  William D. Penny,et al.  Gaussian Observation Hidden Markov models for EEG analysis , 1998 .

[5]  Arthur Flexer,et al.  On the use of self-organizing maps for clustering and visualization , 1999, Intell. Data Anal..

[6]  T Penzel,et al.  Integrated sleep analysis, with emphasis on automatic methods. , 1991, Epilepsy research. Supplement.

[7]  Tapio Elomaa,et al.  Principles of Data Mining and Knowledge Discovery , 2002, Lecture Notes in Computer Science.

[8]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[9]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[10]  Arthur Flexer On the use of self-organizing maps for clustering and visualization , 2001 .

[11]  Gert Pfurtscheller,et al.  Neural network based classification of single-trial EEG data , 1993, Artif. Intell. Medicine.

[12]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[13]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[14]  Daryl Pregibon,et al.  A Statistical Perspective on Knowledge Discovery in Databases , 1996, Advances in Knowledge Discovery and Data Mining.

[15]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[16]  Varghese S. Jacob,et al.  A study of the classification capabilities of neural networks using unsupervised learning: A comparison withK-means clustering , 1994 .

[17]  B H Jansen,et al.  K-complex detection using multi-layer perceptrons and recurrent networks. , 1994, International journal of bio-medical computing.

[18]  Teuvo Kohonen,et al.  Improved versions of learning vector quantization , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[19]  I. Bankman,et al.  Feature-based detection of the K-complex wave in the human electroencephalogram using neural networks , 1992, IEEE Transactions on Biomedical Engineering.

[20]  Georg Dorffner,et al.  Using hidden Markov models to build an automatic, continuous and probabilistic sleep stager , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[21]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[22]  D. Bacon,et al.  Multiple Sequence Alignment , 1986, Journal of molecular biology.

[23]  Erkki Oja,et al.  Subspace methods of pattern recognition , 1983 .

[24]  Robert M. Gray,et al.  An Algorithm for Vector Quantizer Design , 1980, IEEE Trans. Commun..

[25]  M. Posner,et al.  Images of mind , 1994 .

[26]  D Lehmann,et al.  EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. , 1987, Electroencephalography and clinical neurophysiology.

[27]  Dietrich Lehmann,et al.  Spatial analysis of evoked potentials in man—a review , 1984, Progress in Neurobiology.

[28]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[29]  David J. Hand,et al.  Statistics and data mining: intersecting disciplines , 1999, SKDD.

[30]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[31]  D. Lehmann,et al.  Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. , 1993, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[32]  J P Macher,et al.  Neural network model: application to automatic analysis of human sleep. , 1993, Computers and biomedical research, an international journal.

[33]  P. Hazemann,et al.  Handbook of Electroencephalography and Clinical Neurophysiology , 1975 .

[34]  Pierre Baldi,et al.  Bioinformatics - the machine learning approach (2. ed.) , 2000 .

[35]  E. Wolpert A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. , 1969 .

[36]  J Hasan,et al.  Differentiation of normal and disturbed sleep by automatic analysis. , 1983, Acta physiologica Scandinavica. Supplementum.

[37]  D. Lehmann,et al.  Segmentation of brain electrical activity into microstates: model estimation and validation , 1995, IEEE Transactions on Biomedical Engineering.

[38]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[39]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[40]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[41]  I. Rezek,et al.  Stochastic complexity measures for physiological signal analysis , 1998, IEEE Transactions on Biomedical Engineering.

[42]  R. Durbin,et al.  Biological sequence analysis: Background on probability , 1998 .

[43]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[44]  Arthur Flexer,et al.  Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling , 1996, NIPS.

[45]  Stephen Grossberg,et al.  Art 2: Self-Organization Of Stable Category Recognition Codes For Analog Input Patterns , 1988, Other Conferences.

[46]  Herbert Bauer,et al.  Monitoring human information processing via intelligent data analysis of EEG recordings , 2000, Intell. Data Anal..

[47]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[48]  D. Lehmann,et al.  Principles of spatial analysis , 1987 .

[49]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[50]  J.Karim Meddahi,et al.  Knowledge acquisition for multi-channel electroencephalogram interpretation , 1992, Artif. Intell. Medicine.

[51]  H. Markov,et al.  An algorithm to , 1997 .