Praseodymium ion doped phosphate glasses for integrated broadband ion-exchanged waveguide amplifier

Abstract Effective near-infrared emission covering the fifth optical telecommunication window (1380–1525 nm) has been observed in Pr3+-doped phosphate (NMAP) glasses. Judd–Ofelt parameters Ω2 (6.38 × 10−20 cm2), Ω4 (20.30 × 10−20 cm2) and Ω6 (0.40 × 10−20 cm2) indicate a high inversion asymmetrical and strong covalent environment in the optical glasses. The effective bandwidth ( Δ λ eff ) of the corresponding 1D2 → 1G4 transition emission is obtained to be 124 nm, and the maximum stimulated emission cross-section (σem-max) at 1468 nm is derived to be 1.14 × 10−20 cm2. Channel waveguide was fabricated successfully by K+–Na+ ion-exchange method with mode field diameter of 8.8 μm in the horizontal direction and 6.7 μm in the vertical direction. Broad effective bandwidth, large emission cross-section and perfect thermal ion-exchangeability indicate that Pr3+-doped NMAP phosphate glasses are promising in developing integrated broadband waveguide amplifier, especially operating at E- and S-bands which belong to the fifth optical telecommunication window.

[1]  Junjie Zhang,et al.  Fluorescence characteristics and energy transfer of ytterbium-sensitized erbium-doped fluorophosphate glass for amplifier applications , 2014 .

[2]  E. Pun,et al.  Pr3+-doped phosphate glasses for fiber amplifiers operating at 1.38–1.53 μm of the fifth optical telecommunication window , 2014 .

[3]  F. Bretenaker,et al.  Orange emission in Pr3+-doped fluoroindate glasses , 2012, 1210.6313.

[4]  F. Song,et al.  Strong white light in P2O5–Li2O–Yb2O3–Sb2O3 glass doped with Pr3+ion , 2013 .

[5]  G. Chadeyron,et al.  Optical properties and electronic band structure of BiMg2PO6, BiMg2VO6, BiMg2VO6:Pr3+ and BiMg2VO6:Eu3+. , 2014 .

[6]  Zhengwen Yang,et al.  Spectroscopic properties of Tm3+ doped TeO2-R2O-La2O3 glasses for 1.47 μm optical amplifiers , 2011 .

[7]  Daqin Chen,et al.  Broadband near-infrared emission from Tm3+∕Er3+ co-doped nanostructured glass ceramics , 2007 .

[8]  V. Kumar,et al.  Spectroscopy features of Pr3+ and Er3+ ions in Li2O–ZrO2–SiO2 glass matrices mixed with some sesquioxides , 2011 .

[9]  Q. Zhang,et al.  Laser-diode-excited intense luminescence and green-upconversion in erbium-doped bismuth-germanate-lead glasses. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  Jun Xu,et al.  Oxygen-implanted optical planar waveguides in Er3+/Yb3+-codoped silicate glasses for integrated laser generation , 2014 .

[11]  A. Slaoui,et al.  Luminescent Properties and Energy Transfer in Pr3+ Doped and Pr3+-Yb3+ Co-doped ZnO Thin Films , 2014 .

[12]  B. C. Jamalaiah,et al.  Optical absorption, fluorescence and decay properties of Pr3+-doped PbO―H3BO3―TiO2―AlF3 glasses , 2009 .

[13]  J. Vallés Concentration-dependent optimization of Yb3+/Er3+ highly-doped phosphate glass waveguide amplifiers and lasers using a microscopic statistical formalism , 2013 .

[14]  G. Prakash,et al.  Optical properties of highly Er3+-doped sodium–aluminium–phosphate glasses for broadband 1.5 μm emission , 2011 .

[15]  F. Song,et al.  Tm3+/Tb3+/Mn2+ tri-doped phosphate glass ceramic for enhanced white-light-emitting material , 2011 .

[16]  M. Oubaha,et al.  Making red emitting phosphors with Pr3 , 2006 .

[17]  Ultrawide-band near-infrared light source over 1 mW by Sm3+,Pr3+-codoped glass phosphor combined with LED , 2014 .

[18]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[19]  C. K. Jayasankar,et al.  Er3+–Yb3+ codoped phosphate glasses used for an efficient 1.5 μm broadband gain medium , 2012 .

[20]  J. J. Witcher,et al.  Direct femtosecond laser waveguide writing inside zinc phosphate glass. , 2011, Optics express.

[21]  C. K. Jayasankar,et al.  Spectroscopy and 1.47 μ m emission properties of Tm 3+ -doped metaphosphate laser glasses , 2013 .

[22]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[23]  H. Yang,et al.  Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser , 2008 .

[24]  Francesca Parmigiani,et al.  26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing , 2011 .

[25]  Baojiu Chen,et al.  Intense 2.7 μm emission from Er3+/Tm3+/Pr3+ triply doped LiYF4 single crystal grown by Bridgman method , 2013 .

[26]  Qianhuan Zhang,et al.  An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 microm. , 2010, Optics express.

[27]  Y. Messaddeq,et al.  Control of the radiative properties via photon-plasmon interaction in Er3+ -Tm3+ -codoped tellurite glasses in the near infrared region. , 2014, Optics express.

[28]  B. Karmakar,et al.  Efficient green and red fluorescence upconversion in erbium doped new low phonon antimony glasses , 2009 .

[29]  G. Dong,et al.  Synthesis and Up‐conversion Luminescence of Yb3+/Ln3+ (Ln = Er, Tm, Ho) Co‐Doped Strontium Cerate by Pechini Method , 2014 .

[30]  I. Kityk,et al.  Spectroscopic properties of Pr3+-doped Ca4GdO(BO3)3 (GdCOB) , 2001 .

[31]  Animesh Jha,et al.  Rare-earth ion doped TeO2 and GeO2 glasses as laser materials , 2012 .

[32]  Nasser Peyghambarian,et al.  Er3+ doped phosphate glasses and lasers , 1998, Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides: Applications and Fundamentals.

[33]  Yujing Chen,et al.  Spectral Properties of Pr3+‐Doped Transparent‐Glass‐Ceramic Containing Ca5(PO4)3F Nanocrystals , 2013 .

[34]  I. O. Mazali,et al.  Structural and Optical Properties of Erbium and Ytterbium Codoped Germanoniobophosphate Glasses , 2014 .

[35]  Xiaojun Wang,et al.  Parameterizing intensity of 4f2→4f2 electric-dipole transitions in Pr3+ doped LiYF4 , 2011 .

[36]  Zhiguang Zhou,et al.  2.85 µm fluorescence of Ho-doped water-free fluorotellurite glasses , 2014 .

[37]  J. Pisarska,et al.  Local structure and luminescent properties of lead phosphate glasses containing rare earth ions , 2011 .

[38]  B. Luther-Davies,et al.  Emission properties of erbium-doped Ge-Ga-Se glasses, thin films and waveguides for laser amplifiers , 2014 .

[39]  Alessandro Chiasera,et al.  Pr3 +–Yb3 +‐codoped lanthanum fluorozirconate glasses and waveguides for visible laser emission , 2012 .

[40]  Virginie Nazabal,et al.  Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)(65) bulk glasses and fibers , 2013 .

[41]  I. O. Mazali,et al.  Erbium and Ytterbium Codoped Titanoniobophosphate Glasses for Ion‐Exchange‐Based Planar Waveguides , 2010 .

[42]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[43]  W. Jin,et al.  Superbroadband near-IR photoluminescence from Pr3+-doped fluorotellurite glasses. , 2012, Optics express.

[44]  C. K. Jayasankar,et al.  Optical properties of Yb3+-doped phosphate laser glasses , 2011 .

[45]  Animesh Jha,et al.  Broadband emission in Er(3+)-Tm(3+) codoped tellurite fibre. , 2004, Optics express.

[46]  J. Pisarska,et al.  Structure and spectroscopy of rare earth – Doped lead phosphate glasses , 2014 .

[47]  L. Kassab,et al.  Influence of gold nanoparticles on the 1.53 µm optical gain in Er3+/Yb3+: PbO-GeO2 RIB waveguides. , 2014, Optics express.

[48]  Virginie Nazabal,et al.  Pr3+-doped ZBLA fluoride glasses for visible laser emission , 2011 .

[49]  J. Qiu,et al.  Spectral analysis of RE3+ (RE = Sm, Dy, and Tm): P2O5–Al2O3–Na2O glasses , 2009 .

[50]  Boris I. Shraiman,et al.  Towards the clarity limit in optical fibre , 2000, Nature.

[51]  V. K. Rai,et al.  Multicolor visible light upconversion emission in Tm 3+ –Er 3+ codoped TeO 2 –PbO glass under near-infrared laser radiation , 2014 .

[52]  Nathalia P. S. M. Rios,et al.  Spectroscopic study and white-light simulation using praseodymium-doped fluorogermanate glass as single phosphor for white LEDs , 2012 .

[53]  V. K. Rai,et al.  Visible upconversion emissions in Pr3+-doped TeO2–ZnO glass , 2012 .

[54]  R. Brow,et al.  The structure and properties of zinc aluminophosphate glasses , 2014 .

[55]  A. Srivastava On the Pr3+ interconfigurational optical transitions in glasses and an comparative study of the Photon Cascade Emission in crystals and glasses , 2013 .

[56]  P. A. Tanner,et al.  Energy transfer and luminescence studies of Pr3+, Yb3+ co-doped lead borate glass , 2011 .

[57]  M. J. Soares,et al.  Enhanced green upconversion by controlled ceramization of Er3+–Yb3+ co-doped sodium niobium tellurite glass–ceramics for low temperature sensors , 2014 .

[58]  C. K. Jayasankar,et al.  Spectroscopic properties of Dy 3+ -doped oxyfluoride glasses for white light emitting diodes , 2013 .

[59]  Y. Messaddeq,et al.  Green-to-red light tuning by up-conversion emission via energy transfer in Er3+-Tm3+-codoped germanium-tellurite glasses , 2014 .

[60]  Yoshinori Kubota,et al.  Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode. , 2009, Optics express.

[61]  P. Němec,et al.  Electronic energy levels of trivalent lanthanide ions in chalcogenide glasses: Case of Pr3+, Sm3+, and Dy3+ , 2011 .

[62]  Danping Chen,et al.  Near-infrared emission from Pr-doped borophosphate glass for broadband telecommunication , 2013 .

[63]  Y. C. Ratnakaram,et al.  Spectroscopic investigations on Pr³+ and Nd³+ doped strontium-lithium-bismuth borate glasses. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[64]  Guanying Chen,et al.  Ultrasmall monodisperse NaYF(4):Yb(3+)/Tm(3+) nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. , 2010, ACS nano.

[65]  B. C. Jamalaiah,et al.  Application of modified Judd–Ofelt theory and the evaluation of radiative properties of Pr3 +-doped lead telluroborate glasses for laser applications , 2013 .

[66]  Q. Nie,et al.  Quantum cutting in Pr3+-Yb3+ codoped chalcohalide glasses for high-efficiency c-Si solar cells. , 2014, Optics letters.

[67]  Setsuhisa Tanabe,et al.  Mechanism of quantum cutting in Pr3+–Yb3+ codoped oxyfluoride glass ceramics , 2013 .

[68]  V. K. Rai,et al.  Spectroscopic properties of Pr(3+) doped in tellurite glass. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[69]  K. P. Lor,et al.  Refractive-Index Profiling of Buried Planar Waveguides by an Inverse Wentzel–Kramer–Brillouin Method , 2008, Journal of Lightwave Technology.

[70]  C. Rüssel,et al.  Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials , 2015 .

[71]  L. Barbosa,et al.  Near-IR emission in Pr3+single doped and tunable near-IR emission in Pr3+/Yb3+ codoped tellurite tungstate glasses for broadband optical amplifiers , 2014 .

[72]  G. Hungerford,et al.  Structural studies of lithium boro tellurite glasses doped with praseodymium and samarium oxides , 2012 .

[73]  Xunsi Wang,et al.  Enhanced 2.7 μm mid-infrared emission and energy transfer mechanism in Er3+/Nd3+ codoped tellurite glass , 2015 .

[74]  E. Dianov,et al.  Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser. , 2014, Optics express.

[75]  Frank G. Shi,et al.  Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers , 2008 .

[76]  Xiaojun Wang,et al.  Size-dependent excitation spectra and energy transfer in Tb3+-doped Y2O3 nanocrystalline , 2007 .