A new multiaxial fatigue damage model for various metallic materials under the combination of tension and torsion loadings

Based on the critical plane approach, a new damage parameter for multiaxial fatigue damage is presented. Both components of strain and stress are considered in this parameter. Thus, a new multiaxial fatigue damage model is given based on the critical plane approach. The capability of fatigue life prediction for the proposed fatigue damage model is checked against the experimental data of Hot-rolled 45 Steel, S460N Steel, 1045HR Steel, 30CrMnSiNi2A alloy steel, and GH4169 alloy at elevated temperature, and the predicted results are compared with results from common multiaxial fatigue model. It is demonstrated that the proposed criterion gives better satisfactory results for all the five checked materials.

[1]  A. Varvani-Farahani,et al.  A new energy-critical plane parameter for fatigue life assessment of various metallic materials subjected to in-phase and out-of-phase multiaxial fatigue loading conditions , 2000 .

[2]  K. J. Miller,et al.  Two Decades of Progress in the Assessment of Multiaxial Low-Cycle Fatigue Life , 1982 .

[3]  U. Muralidharan,et al.  A Modified Universal Slopes Equation for Estimation of Fatigue Characteristics of Metals , 1988 .

[4]  Wei-Xing Yao,et al.  A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading , 2006 .

[5]  Wang Dejun,et al.  A new multiaxial fatigue damage model based on the critical plane approach , 1998 .

[6]  B. N. Leis,et al.  Low-Cycle Fatigue and Life Prediction , 1982 .

[7]  De-Guang Shang,et al.  Creep-fatigue life prediction under fully-reversed multiaxial loading at high temperatures , 2007 .

[8]  K. J. Miller,et al.  A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions , 1973 .

[9]  Grzegorz Glinka,et al.  A MULTIAXIAL FATIGUE STRAIN ENERGY DENSITY PARAMETER RELATED TO THE CRITICAL FRACTURE PLANE , 1995 .

[10]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[11]  Soon-Bok Lee,et al.  A critical review on multiaxial fatigue assessments of metals , 1996 .

[12]  Yanyao Jiang,et al.  An experimental evaluation of three critical plane multiaxial fatigue criteria , 2007 .

[13]  Jing Deng,et al.  Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach , 2007 .

[14]  Xu Chen,et al.  Damage analysis of low-cycle fatigue under non-proportional loading , 1994 .

[15]  M. W. Brown,et al.  Low-Cycle Fatigue Under Out-of-Phase Loading Conditions , 1977 .

[16]  Tatsuo Inoue,et al.  Low Cycle Fatigue under Multiaxial Stresses : In the Case of Combined Cyclic Tension-Compression and Cyclic Torsion at Room Temperature , 1969 .

[17]  D. L. McDiarmid,et al.  A SHEAR STRESS BASED CRITICAL‐PLANE CRITERION OF MULTIAXIAL FATIGUE FAILURE FOR DESIGN AND LIFE PREDICTION , 1994 .

[18]  Jiang A fatigue criterion for general multiaxial loading , 2000 .

[19]  K. S. Kim,et al.  Low-cycle fatigue of 1Cr–18Ni–9Ti stainless steel and related weld metal under axial, torsional and 90° out-of-phase loading , 2004 .