Ag-TiNx electrodes deposited on piezoelectric poly(vinylidene fluoride) for biomedical sensor applications

Abstract Electroactive polymers are one of the most interesting class of polymers used as smart materials in various applications, such as the development of sensors and actuators for biomedical applications in areas such as smart prosthesis, implantable biosensors and biomechanical signal monitoring, among others. For acquiring or applying the electrical signal from/to the piezoelectric material, suitable electrodes can be produced from Ti based coatings with tailored multifunctional properties, e.g., electrical conductivity and antibacterial characteristics, through Ag inclusions. TiN is a good candidate for this application since it is electrically conductive and shows superior chemical stability in relation to pure Ti, being also biocompatible.

[1]  J. G. Rocha,et al.  Piezoresistive sensors for force mapping of hip-prostheses , 2013 .

[2]  Senentxu Lanceros-Méndez,et al.  Energy harvesting performance of piezoelectric electrospun polymer fibers and polymer/ceramic composites , 2013 .

[3]  E. Bourhis,et al.  The influence of annealing treatments on the properties of Ag:TiO2 nanocomposite films prepared by magnetron sputtering , 2012 .

[4]  José Gerardo V. da Rocha,et al.  Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear , 2010, IEEE Transactions on Industrial Electronics.

[5]  F. Macedo,et al.  Nanocomposite Ag:TiN thin films for dry biopotential electrodes , 2013 .

[6]  S. M. Marques,et al.  Ti1−xAgx electrodes deposited on polymer based sensors , 2014 .

[7]  P. Chu,et al.  Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. , 2011, Biomaterials.

[8]  Yu Wang,et al.  Microstructures and electrical conductance of silver nanocrystalline thin films on flexible polymer substrates , 2010 .

[9]  S. V. Meschel,et al.  Thermochemistry of some binary alloys of noble metals (Cu, Ag, Au) and transition metals by high temperature direct synthesis calorimetry , 2003 .

[10]  S. Lanceros‐Méndez,et al.  Degradation of the dielectric and piezoelectric response of β-poly(vinylidene fluoride) after temperature annealing , 2011 .

[11]  U. Aebi,et al.  Preparation and characterization of TiN–Ag nanocomposite films , 2002 .

[12]  C. Palacio,et al.  Advanced surface characterization of silver nanocluster segregation in Ag–TiCN bioactive coatings by RBS, GDOES, and ARXPS , 2013, Analytical and Bioanalytical Chemistry.

[13]  J. G. Rocha,et al.  Development of inkjet printed strain sensors , 2013 .

[14]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[15]  H. Luckarift,et al.  Hybrid antimicrobial enzyme and silver nanoparticle coatings for medical instruments. , 2009, ACS applied materials & interfaces.

[16]  K. Whitehead,et al.  A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings , 2009 .

[17]  R. Schmid-Fetzer,et al.  Critical Assessment and Thermodynamic Modeling of the Ti-N System , 1996, Calphad.

[18]  S. M. Marques,et al.  PVD-Grown photocatalytic TiO2 thin films on PVDF substrates for sensors and actuators applications , 2008 .

[19]  S. Konstantinidis,et al.  RF amplified magnetron source for efficient titanium nitride deposition , 2003 .

[20]  B. Almeida,et al.  XRD and FTIR analysis of Ti-Si-C-ON coatings for biomedical applications , 2008 .

[21]  P. Maiti,et al.  Radiation-resistant behavior of poly(vinylidene fluoride)/layered silicate nanocomposites. , 2009, ACS applied materials & interfaces.

[22]  X‐ray scattering experiments on sputtered titanium dioxide coatings onto PVDF polymers for self‐cleaning applications , 2011 .

[23]  L. Tan,et al.  High temperature interfacial reactions of TiC, ZrC, TiN, and ZrN with palladium , 2010 .

[24]  I. Safi,et al.  Recent aspects concerning DC reactive magnetron sputtering of thin films: a review , 2000 .

[25]  Senentxu Lanceros-Méndez,et al.  Piezoresistive silicon thin film sensor array for biomedical applications , 2011 .

[26]  S. Carvalho,et al.  Influence of albumin on the tribological behavior of Ag-Ti (C, N) thin films for orthopedic implants. , 2014, Materials Science and Engineering C: Materials for Biological Applications.

[27]  D. Depla,et al.  Magnetron sputter deposition: Linking discharge voltage with target properties , 2009 .

[28]  S.P. Mohanty,et al.  Biosensors: a tutorial review , 2006, IEEE Potentials.

[29]  S. Carvalho,et al.  Influence of silver content on the tribomechanical behavior on Ag-TiCN bioactive coatings , 2012 .

[30]  S. Lanceros‐Méndez,et al.  Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride) , 2010 .

[31]  B. Rydevik,et al.  Osseointegration in skeletal reconstruction and rehabilitation: a review. , 2001, Journal of rehabilitation research and development.

[32]  Changrong Li,et al.  Experimental study and thermodynamic assessment of the Ag–Ti system , 2005 .

[33]  R. Gregorio,et al.  Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride) , 2000 .

[34]  K. Whitehead,et al.  Comparison of the tribological and antimicrobial properties of CrN/Ag, ZrN/Ag, TiN/Ag, and TiN/Cu nanocomposite coatings , 2010 .

[35]  F. Macedo,et al.  TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the films , 2013 .

[36]  J. Haueisen,et al.  Electrochemical behaviour of nanocomposite Agx:TiN thin films for dry biopotential electrodes , 2014 .

[37]  V. Zaporojtchenko,et al.  Surface segregation in TiO2-based nanocomposite thin films , 2012, Nanotechnology.

[38]  Ronald P. Howson,et al.  Pressure stability in reactive magnetron sputtering , 1988 .

[39]  C. Palacio,et al.  Ag–Ti(C, N)-based coatings for biomedical applications: influence of silver content on the structural properties , 2011 .