The Structure of Visual Spaces

The “visual space” of an optical observer situated at a single, fixed viewpoint is necessarily very ambiguous. Although the structure of the “visual field” (the lateral dimensions, i.e., the “image”) is well defined, the “depth” dimension has to be inferred from the image on the basis of “monocular depth cues” such as occlusion, shading, etc. Such cues are in no way “given”, but are guesses on the basis of prior knowledge about the generic structure of the world and the laws of optics. Thus such a guess is like a hallucination that is used to tentatively interpret image structures as depth cues. The guesses are successful if they lead to a coherent interpretation. Such “controlled hallucination” (in psychological terminology) is similar to the “analysis by synthesis” of computer vision. Although highly ambiguous, visual spaces do have geometrical structure. The group of ambiguities left open by the cues (e.g., the well known bas-relief ambiguity in the case of shape from shading) may be interpreted as the group of congruences (proper motions) of the space. The general structure of visual spaces for different visual fields is explored in the paper. Applications include improved viewing systems for optical man-machine interfaces.

[1]  Johann Benedict Listing,et al.  Beitrag zur physiologischen Optik , 1845 .

[2]  Hermann Lotze Mikrokosmus : Ideen zur Naturgeschichte und Geschichte der Menschheit : Versuch einer Anthropologie , 1856 .

[3]  Arthur Cayley XXIII. A fifth memoir upon quantics , 1858, Philosophical Transactions of the Royal Society of London.

[4]  Arthur Cayley,et al.  IV. A sixth memoir upon quantics , 1859 .

[5]  F. C. Donders,et al.  On the Anomalies of Accommodation and Refraction of the Eye, with a Preliminary Essay on Physiological Dioptrics , 1864, The British and Foreign Medico-Chirurgical Review.

[6]  B. Riemann Über die Hypothesen, welche der Geometrie zu Grunde liegen , 1868 .

[7]  Felix Klein,et al.  Ueber die sogenannte Nicht-Euklidische Geometrie , 1871 .

[8]  Felix . Klein,et al.  Vergleichende Betrachtungen über neuere geometrische Forschungen , 1893 .

[9]  Felix Klein,et al.  Ueber die sogenannte Nicht-Euklidische Geometrie , 1873 .

[10]  F. Brentano Psychology from an Empirical Standpoint , 1874 .

[11]  Guido Hauck Die Subjektive Perspektive und die Horizontalen Curvaturen des Dorischen Styls , 1879 .

[12]  E. Abbott,et al.  Flatland: a Romance of Many Dimensions , 1884, Nature.

[13]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[14]  Adolf von Hildebrand,et al.  The problem of form in painting and sculpture , 1907 .

[15]  Hermann von Helmholtz,et al.  Die Tatsachen in der Wahrnehmung , 1971, Philosophische Vorträge und Aufsätze.

[16]  L. Wittgenstein Tractatus Logico-Philosophicus , 2021, Nordic Wittgenstein Review.

[17]  H. Hahn Vorlesungen über neuere Geometrie von M. Pasch , 1921 .

[18]  J. Lense Über die Hypothesen, welche der Geometrie zu Grunde liegen , 1922 .

[19]  Hermann Lotze,et al.  Mikrokosmos : Ideen zur Naturgeschichte und Geschichte der Menschheit , 1923 .

[20]  Bertrand Russell,et al.  La géométrie dans le monde sensible , 1924 .

[21]  A. Ames,et al.  The Illusion of Depth from Single Pictures , 1925 .

[22]  Felix Klein,et al.  Vorlesungen über nicht-euklidische Geometrie , 1928 .

[23]  Philippe Devaux Expérience et formalisme: A propos de "Géométrie dans le monde sensible", de Jean Nicod, Paris, Alcan, 1924 , 1930 .

[24]  Vaughan Cornish Scenery and the Sense of Sight , 1936, Nature.

[25]  Harold Schlosberg,et al.  Stereoscopic Depth from Single Pictures , 1941 .

[26]  K. Strubecker Differentialgeometrie des isotropen Raumes. II. Die Flächen konstanter RelativkrümmungK=rt−s2 , 1942 .

[27]  K. Strubecker Differentialgeometrie des isotropen Raumes. III. Flächentheorie , 1942 .

[28]  K. Strubecker Differentialgeometrie des isotropen Raumes. IV. Theorie der flächentreuen Abbildungen der Ebene , 1944 .

[29]  L CHARNWOOD,et al.  Mathematical analysis of binocular vision. , 1948, The Optician.

[30]  Paul M. Laporte,et al.  Mathematical Analysis of Binocular Vision , 1950 .

[31]  R. K. Luneburg Errata:* The Metric of Binocular Visual Space. , 1951 .

[32]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[33]  R. Hetherington The Perception of the Visual World , 1952 .

[34]  A A BLANK,et al.  The Luneburg theory of binocular visual space. , 1953, Journal of the Optical Society of America.

[35]  Paul Schrecker,et al.  The Leibniz-Clarke Correspondence. , 1957 .

[36]  S. Duke-Elder,et al.  The eye in evolution , 1958 .

[37]  J. Hier SYSTEM OF OPHTHALMOLOGY. VOL. I. THE EYE IN EVOLUTION , 1959 .

[38]  E. Gombrich ART AND ILLUSION: A STUDY IN THE PSYCHOLOGY OF PICTORIAL REPRESENTATION. , 1960 .

[39]  Ludwig Wittgenstein,et al.  Tractatus Logico-Philosophicus: The German Text of Ludwig Wittgenstein's Logisch-philosophische Abhandlung , 1962 .

[40]  Ludwig Wittgenstein Tractatus logico-philosophicus : Logisch-philosophische Abhandlung , 1963 .

[41]  H. Coxeter,et al.  Introduction to Geometry , 1964, The Mathematical Gazette.

[42]  C. H. Graham,et al.  Vision and visual perception , 1965 .

[43]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[44]  I. M. Yaglom,et al.  Complex Numbers in Geometry , 1969, The Mathematical Gazette.

[45]  Edwin T. Jaynes,et al.  Prior Probabilities , 1968, Encyclopedia of Machine Learning.

[46]  G. Bouligand,et al.  La perspective curviligne : de l'espace visuel à l'image construite , 1968 .

[47]  M. Born Principles of Optics : Electromagnetic theory of propagation , 1970 .

[48]  John M. Kennedy,et al.  Optics Painting and Photography , 1970 .

[49]  N. Hale Abstraction In Art and Nature , 1972 .

[50]  J M Foley,et al.  The size-distance relation and intrinsic geometry of visual space: implications for processing. , 1972, Vision research.

[51]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[52]  Rupert Riedl,et al.  Die Ordnung des Lebendigen : Systembedingungen der Evolution , 1975 .

[53]  W. Vent,et al.  Riedl, Rupert, Die Ordnung des Lebendigen. Systembedingungen der Evolution. 372 S., 317 Abb., 7 Tab. Verlag Paul Parey. Hamburg und Berlin, 1975 Preis: geb. DM 98,‐ , 1978 .

[54]  I. M. I︠A︡glom A simple non-Euclidean geometry and its physical basis : an elementary account of Galilean geometry and the Galilean principle of relativity , 1979 .

[55]  田淵 桂子 Alice′s Adventures in Wonderlandのことば遊びとパロデイ (〔広島女子大学文学部〕創立60周年記年号) , 1981 .

[56]  R. Hess Developmental sensory impairment: amblyopia or tarachopia? , 1982, Human neurobiology.

[57]  J. Willats,et al.  Perspective and Other Drawing Systems , 1983 .

[58]  Jan J. Koenderink,et al.  Limits in perception , 1984 .

[59]  Ted Jacobs Drawing With an Open Mind: Reflections from a Drawing Teacher , 1986 .

[60]  S. Zucker THE EMERGING PARADIGM OF COMPUTATIONAL VISION , 1987 .

[61]  Hans Sachs,et al.  Ebene isotrope Geometrie , 1987 .

[62]  Hans Sachs,et al.  Isotrope Geometrie des Raumes , 1990 .

[63]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[64]  Michael S. Landy,et al.  Computational models of visual processing , 1991 .

[65]  G. Naber The geometry of Minkowski spacetime , 1992 .

[66]  Yiannis Aloimonos,et al.  Vision and action , 1995, Image Vis. Comput..

[67]  John R. Searle,et al.  The Rediscovery of the Mind , 1995, Artif. Intell..

[68]  Jason W. Brown Fundamentals of Process Neuropsychology , 1998, Brain and Cognition.

[69]  J. Bell A primer of infinitesimal analysis , 1998 .

[70]  Mel Siegel,et al.  Kinder, gentler stereo , 1999, Electronic Imaging.

[71]  E. Kheirandish The Arabic Version of Euclid’s Optics , 1999 .

[72]  J J Koenderink,et al.  Direct Measurement of the Curvature of Visual Space , 2000, Perception.

[73]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[74]  James J. Kumler,et al.  Fish-eye lens designs and their relative performance , 2000, SPIE Optics + Photonics.

[75]  J T Todd,et al.  Ambiguity and the ‘Mental Eye’ in Pictorial Relief , 2001, Perception.

[76]  Refractor Vision , 2000, The Lancet.

[77]  Jan J. Koenderink,et al.  Pappus in optical space , 2002, Perception & psychophysics.

[78]  J. Koenderink,et al.  Exocentric pointing to opposite targets. , 2003, Acta psychologica.

[79]  G. Berkeley Essay Towards a New Theory of Vision , 2004 .

[80]  Andrea J. van Doorn,et al.  The Generic Bilinear Calibration-Estimation Problem , 2004, International Journal of Computer Vision.

[81]  Graham R. Martin,et al.  An owl's eye: Schematic optics and visual performance inStrix aluco L. , 1982, Journal of comparative physiology.

[82]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[83]  Bernd Jähne,et al.  Practical handbook on image processing for scientific and technical applications , 2004 .

[84]  A. Yuille,et al.  Opinion TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Vision as Bayesian inference: analysis by synthesis? , 2022 .

[85]  Jie W Weiss,et al.  Bayesian Statistical Inference for Psychological Research , 2008 .

[86]  J. Swift,et al.  Gulliver's Travels: And Other Works , 2009 .