Exact pathwise simulation of multi-dimensional Ornstein-Uhlenbeck processes

Abstract The exact pathwise simulation of multidimensional Ornstein–Uhlenbeck processes is considered. We propose two procedures that allow the exact pathwise simulation of this type of processes and, simultaneously, the generation of the underlying Wiener trajectories from the same source of randomness. This is particularly important when both processes are system-components in larger stochastic models, for which the study of pathwise dynamics is required.

[1]  L. Arnold Stochastic Differential Equations: Theory and Applications , 1992 .

[2]  Chenxu Li,et al.  Exact simulation of the Ornstein-Uhlenbeck driven stochastic volatility model , 2019, Eur. J. Oper. Res..

[3]  G. Uhlenbeck,et al.  On the Theory of the Brownian Motion , 1930 .

[4]  R. Hopfner,et al.  Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input , 2013, 1311.3458.

[5]  Jianjun Jiao,et al.  Environmental variability in a stochastic epidemic model , 2018, Appl. Math. Comput..

[6]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[7]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[8]  Evelyn Buckwar,et al.  A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods , 2009, Math. Comput. Simul..

[9]  Nicola Bruti-Liberati Numerical Solution of Stochastic Differential Equations with Jumps in Finance , 2010 .

[10]  H. Schurz Preservation of probabilistic laws through Euler methods for ornstein-uhlenbeck process , 1999 .

[11]  L. Trefethen,et al.  Numerical linear algebra , 1997 .

[12]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[13]  Rolando J. Biscay,et al.  Weak local linear discretizations for stochastic differential equations: convergence and numerical schemes , 2006 .

[14]  D. Valenti,et al.  Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise , 2008, 0810.1432.

[15]  K. Burrage,et al.  A stochastic exponential Euler scheme for simulation of stiff biochemical reaction systems , 2014, BIT Numerical Mathematics.

[16]  Ingemar Kaj,et al.  Using the Ornstein-Uhlenbeck process to model the evolution of interacting populations. , 2017, Journal of theoretical biology.

[17]  E. Platen,et al.  Functionals of Multidimensional Diffusions with Applications to Finance , 2013 .

[18]  Xiaoying Han,et al.  Random Ordinary Differential Equations and Their Numerical Solution , 2017 .

[19]  Adam W. Kolkiewicz Efficient Monte Carlo for Diffusion Processes Using Ornstein–Uhlenbeck Bridges , 2016 .

[20]  C. Loan Computing integrals involving the matrix exponential , 1978 .