Error-Bounded and Feature Preserving Surface Remeshing with Minimal Angle Improvement

Surface remeshing is a key component in many geometry processing applications. The typical goal consists in finding a mesh that is (1) geometrically faithful to the original geometry, (2) as coarse as possible to obtain a low-complexity representation and (3) free of bad elements that would hamper the desired application (e.g., the minimum interior angle is above an application-dependent threshold). Our algorithm is designed to address all three optimization goals simultaneously by targeting prescribed bounds on approximation error <inline-formula> <tex-math notation="LaTeX">$\delta$</tex-math><alternatives><inline-graphic xlink:href="hu-ieq1-2632720.gif"/> </alternatives></inline-formula>, minimal interior angle <inline-formula><tex-math notation="LaTeX">$\theta$</tex-math> <alternatives><inline-graphic xlink:href="hu-ieq2-2632720.gif"/></alternatives></inline-formula> and maximum mesh complexity <inline-formula><tex-math notation="LaTeX">$N$</tex-math><alternatives> <inline-graphic xlink:href="hu-ieq3-2632720.gif"/></alternatives></inline-formula> (number of vertices). The approximation error bound <inline-formula><tex-math notation="LaTeX">$\delta$</tex-math><alternatives> <inline-graphic xlink:href="hu-ieq4-2632720.gif"/></alternatives></inline-formula> is a hard constraint, while the other two criteria are modeled as optimization goals to guarantee feasibility. Our optimization framework applies carefully prioritized local operators in order to greedily search for the coarsest mesh with minimal interior angle above <inline-formula><tex-math notation="LaTeX">$\theta$</tex-math><alternatives> <inline-graphic xlink:href="hu-ieq5-2632720.gif"/></alternatives></inline-formula> and approximation error bounded by <inline-formula><tex-math notation="LaTeX">$\delta$</tex-math><alternatives> <inline-graphic xlink:href="hu-ieq6-2632720.gif"/></alternatives></inline-formula>. Fast runtime is enabled by a local approximation error estimation, while implicit feature preservation is obtained by specifically designed vertex relocation operators. Experiments show that for reasonable angle bounds (<inline-formula><tex-math notation="LaTeX"> $\theta \leq 35^\circ$</tex-math><alternatives><inline-graphic xlink:href="hu-ieq7-2632720.gif"/></alternatives> </inline-formula>) our approach delivers high-quality meshes with implicitly preserved features (no tagging required) and better balances between geometric fidelity, mesh complexity and element quality than the state-of-the-art.

[1]  J. L. Walsh,et al.  Polynomials of best approximation on a real finite point set. I , 1959 .

[2]  Bruno Lévy,et al.  Particle-based anisotropic surface meshing , 2013, ACM Trans. Graph..

[3]  B. Lévy,et al.  Lp Centroidal Voronoi Tessellation and its applications , 2010, ACM Trans. Graph..

[4]  Jeffrey T. Henrikson Completeness and Total Boundedness of the Hausdorff Metric , 1999 .

[5]  Xiaohong Jia,et al.  Blue‐Noise Remeshing with Farthest Point Optimization , 2014, Comput. Graph. Forum.

[6]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[7]  Huamin Wang,et al.  Bilateral blue noise sampling , 2013, ACM Trans. Graph..

[8]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[9]  B. Lévy,et al.  L p Centroidal Voronoi Tessellation and its applications , 2010, SIGGRAPH 2010.

[10]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[11]  Olga Sorkine-Hornung,et al.  Instant field-aligned meshes , 2015, ACM Trans. Graph..

[12]  Leif Kobbelt,et al.  A remeshing approach to multiresolution modeling , 2004, SGP '04.

[13]  Mark Meyer,et al.  Interactive geometry remeshing , 2002, SIGGRAPH.

[14]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[15]  Pierre Alliez,et al.  Isotopic approximation within a tolerance volume , 2015, ACM Trans. Graph..

[16]  Mario Botsch,et al.  Adaptive Remeshing for Real-Time Mesh Deformation , 2013, Eurographics.

[17]  Houman BOROUCHAKIyUTT,et al.  Surface Mesh Evaluation , 1997 .

[18]  Martin Isenburg,et al.  Centroidal Voronoi diagrams for isotropic surface remeshing , 2005, Graph. Model..

[19]  Dong-Ming Yan,et al.  Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram , 2009, Comput. Graph. Forum.

[20]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[21]  Leif Kobbelt,et al.  Feature sensitive mesh processing , 2003, SCCG '03.

[22]  Dong-Ming Yan,et al.  Non-Obtuse Remeshing with Centroidal Voronoi Tessellation , 2016, IEEE Transactions on Visualization and Computer Graphics.

[23]  Michael T. Heath,et al.  Feature Detection for Surface Meshes , 2002 .

[24]  Xiaohong Jia,et al.  Efficient maximal Poisson-disk sampling and remeshing on surfaces , 2015, Comput. Graph..

[25]  Pierre Alliez,et al.  2D Centroidal Voronoi Tessellations with Constraints , 2010 .

[26]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[27]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[28]  Martin Isenburg,et al.  Isotropic surface remeshing , 2003, 2003 Shape Modeling International..

[29]  Jianwei Guo,et al.  A Simple Push-Pull Algorithm for Blue-Noise Sampling , 2017, IEEE Transactions on Visualization and Computer Graphics.

[30]  M. Rivara New Mathematical Tools and Techniques for the Refinement and/or Improvement of Unstructured Triangulations , 1996 .

[31]  Ashraf El-Hamalawi,et al.  Mesh Generation – Application to Finite Elements , 2001 .

[32]  James F. O'Brien,et al.  Adaptive anisotropic remeshing for cloth simulation , 2012, ACM Trans. Graph..

[33]  Simon Fuhrmann,et al.  Direct Resampling for Isotropic Surface Remeshing , 2010, VMV.

[34]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[35]  Craig Gotsman,et al.  Mesh massage , 2008, The Visual Computer.

[36]  H.-P. Seidel,et al.  Dynamic remeshing and applications , 2003, SM '03.

[37]  Young J. Kim,et al.  Interactive Hausdorff distance computation for general polygonal models , 2009, SIGGRAPH '09.

[38]  Joonki Paik,et al.  Triangle mesh-based edge detection and its application to surface segmentation and adaptive surface smoothing , 2002, Proceedings. International Conference on Image Processing.

[39]  Dong-Ming Yan,et al.  Low-Resolution Remeshing Using the Localized Restricted Voronoi Diagram , 2014, IEEE Transactions on Visualization and Computer Graphics.

[40]  H. Borouchaki,et al.  Simplification of surface mesh using Hausdorff envelope , 2005 .

[41]  Dong-Ming Yan,et al.  Gap processing for adaptive maximal poisson-disk sampling , 2012, TOGS.

[42]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[43]  Paolo Cignoni,et al.  Metro: Measuring Error on Simplified Surfaces , 1998, Comput. Graph. Forum.

[44]  Pierre Alliez,et al.  CGAL - The Computational Geometry Algorithms Library , 2011 .

[45]  Rémy Prost,et al.  Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams , 2008, IEEE Transactions on Visualization and Computer Graphics.

[46]  Christian Rössl,et al.  Feature Sensitive Remeshing , 2001, Comput. Graph. Forum.

[47]  Craig Gotsman,et al.  Explicit Surface Remeshing , 2003, Symposium on Geometry Processing.