Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity.

Bacteriophage muralytic enzymes degrade the cell wall envelope of staphylococci to release phage particles from the bacterial cytoplasm. Murein hydrolases of staphylococcal phages phi11, 80alpha, 187, Twort, and phiPVL harbor a central domain that displays sequence homology to known N-acetylmuramyl-L-alanyl amidases; however, their precise cleavage sites on the staphylococcal peptidoglycan have thus far not been determined. Here we examined the properties of the phi11 enzyme to hydrolyze either the staphylococcal cell wall or purified cell wall anchor structures attached to surface protein. Our results show that the phi11 enzyme has D-alanyl-glycyl endopeptidase as well as N-acetylmuramyl-L-alanyl amidase activity. Analysis of a deletion mutant lacking the amidase-homologous sequence, phi11(Delta181-381), revealed that the D-alanyl-glycyl endopeptidase activity is contained within the N-terminal 180 amino acid residues of the polypeptide chain. Sequences similar to this N-terminal domain are found in the murein hydrolases of staphylococcal phages but not in those of phages that infect other Gram-positive bacteria such as Listeria or Bacillus.

[1]  R. Jayaswal,et al.  Sequence analysis of a Staphylococcus aureus gene encoding a peptidoglycan hydrolase activity. , 1991, Gene.

[2]  J. Strominger,et al.  Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. VII. Mode of action of the bacteriolytic peptidase from Myxobacter and the isolation of intact cell wall polysaccharides. , 1967, Biochemistry.

[3]  J. Sánchez-Puelles,et al.  Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. XIX. Isoprenoid alcohol phosphokinase. , 1970, The Journal of biological chemistry.

[5]  K. Schleifer 5 Analysis of the Chemical Composition and Primary Structure of Murein , 1985 .

[6]  C. Schindler,et al.  LYSOSTAPHIN: A NEW BACTERIOLYTIC AGENT FOR THE STAPHYLOCOCCUS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D J Tipper,et al.  Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Strominger,et al.  STRUCTURE OF THE CELL WALL OF STAPHYLOCOCCUS AUREUS, STRAIN COPENHAGEN. II. SEPARATION AND STRUCTURE OF DISACCHARIDES. , 1963, Biochemistry.

[9]  B. Glauner Separation and quantification of muropeptides with high-performance liquid chromatography. , 1988, Analytical biochemistry.

[10]  J. Rocourt Viruses of prokaryotes: Ackermann, H.W. & Dubow, M.S. 2 vol. (18.5×26 cm), 444 pages. CRC Press. Inc. West Palm Beach, 1987 , 1988 .

[11]  S. Norioka,et al.  Purification, staphylolytic activity, and cleavage sites of alpha-lytic protease from Achromobacter lyticus. , 1997, Journal of biochemistry.

[12]  J. Strominger,et al.  Structure of the Cell Wall of Staphylococcus aureus StrainCopenhagen. V. Isolation of Peptidases Active on the Peptide Moiety of the Cell Walls of Some Gram-Positive Bacteria , 1965 .

[13]  J. Ghuysen,et al.  Peptide cross-links in bacterial cell wall peptidoglycans studied with specific endopeptidases from Streptomyces albus G. , 1966, Biochemistry.

[14]  J. Strominger,et al.  Structure of the Cell Wall of Staphylococcus aureus StrainCopenhagen. VI. The Soluble Glycopeptide and Its Sequential Degradatuib by Peptidases , 1965 .

[15]  T. Kimura,et al.  Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage phiPVL carrying Panton-Valentine leukocidin genes. , 1998, Gene.

[16]  H. Heymann,et al.  Peptide subunit. N(super x)-(L-alanyl-D-isoglutaminyl)L-lysyl-D-alanine in cell wall peptidoglycans of Staphylococcus aureus strain Copenhagen, Micrococcus roseus R27, and Streptococcus pyogenes group A, typ 14 , 1966 .

[17]  O. Schneewind,et al.  Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. , 1995, Science.

[18]  F. Studier Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. , 1991, Journal of molecular biology.

[19]  M. de Pedro,et al.  Peptidoglycan Fine Structure of the Radiotolerant Bacterium Deinococcus radiodurans Sark , 1999, Journal of bacteriology.

[20]  R. Young,et al.  Bacteriophage lysis: mechanism and regulation , 1992, Microbiological reviews.

[21]  M. de Pedro,et al.  Structure of peptidoglycan from Thermus thermophilus HB8 , 1995, Journal of bacteriology.

[22]  T. Creighton Proteins: Structures and Molecular Properties , 1986 .

[23]  A. Tomasz,et al.  A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Tamaki,et al.  Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. , 1984, The Journal of biological chemistry.

[25]  J. Strominger,et al.  STRUCTURE OF THE CELL WALL OF STAPHYLOCOCCUS AUREUS, STRAIN COPENHAGEN. I. PREPARATION OF FRAGMENTS BY ENZYMATIC HYDROLYSIS. , 1963, Biochemistry.

[26]  E. Díaz,et al.  Chimeric pneumococcal cell wall lytic enzymes reveal important physiological and evolutionary traits. , 1991, The Journal of biological chemistry.

[27]  D. Tipper Mechanism of Autolysis of Isolated Cell Walls of Staphylococcus aureus , 1969, Journal of bacteriology.

[28]  W. Zygmunt,et al.  LYSOSTAPHIN: ENZYMATIC MODE OF ACTION. , 1965, Biochemical and biophysical research communications.

[29]  E. Díaz,et al.  Chimeric phage-bacterial enzymes: a clue to the modular evolution of genes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Tomasz,et al.  Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain. The role of penicillin binding protein 2A. , 1992, The Journal of biological chemistry.

[31]  D. Tipper Structures of the cell wall peptidoglycans of Staphylococcus epidermidis Texas 26 and Staphylococcus aureus Copenhagen. II. Structure of neutral and basic peptides from hydrolysis with the Myxobacter al-1 peptidase. , 1969, Biochemistry.

[32]  J. Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[33]  J. Strominger,et al.  Mechanisms of Enzymatic Bacteriolysis , 1967 .

[34]  S. Norioka,et al.  Molecular cloning and nucleotide sequence of the beta-lytic protease gene from Achromobacter lyticus , 1990, Journal of bacteriology.

[35]  J. Strominger,et al.  Structure of the Cell Wall of Staphylococcus aureus, Strain Copenhagen. III. Further Studies of the Disaccharides* , 1965 .

[36]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of cross-linking by penicillins and cephalosporins: studies in Staphylococcus aureus in vivo. , 1968, The Journal of biological chemistry.

[37]  O. Schneewind,et al.  Target cell specificity of a bacteriocin molecule: a C‐terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. , 1996, The EMBO journal.

[38]  Vincent A. Fischetti,et al.  Sorting of protein a to the staphylococcal cell wall , 1992, Cell.

[39]  R. López,et al.  Sequence of the Streptococcus pneumoniae bacteriophage HB-3 amidase reveals high homology with the major host autolysin , 1990, Journal of bacteriology.

[40]  R. Jayaswal,et al.  Molecular cloning, sequencing, and expression of lytM, a unique autolytic gene of Staphylococcus aureus , 1997, Journal of bacteriology.

[41]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[42]  A. Tomasz,et al.  Specific recognition of choline residues in the cell wall teichoic acid by the N-acetylmuramyl-L-alanine amidase of Pneumococcus. , 1975, The Journal of biological chemistry.

[43]  O. Schneewind,et al.  Targeting of muralytic enzymes to the cell division site of Gram‐positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus , 1998, The EMBO journal.

[44]  J. Strominger,et al.  Enzymes that degrade bacterial cell walls , 1966 .

[45]  E. Díaz,et al.  EJ-1, a temperate bacteriophage of Streptococcus pneumoniae with a Myoviridae morphotype , 1992, Journal of bacteriology.

[46]  J. Strominger,et al.  Biosynthesis of the peptidoglycan of bacterial cell walls. XXI. Isolation of free C55-isoprenoid alcohol and of lipid intermediates in peptidoglycan synthesis from Staphylococcus aureus. , 1970, Journal of Biological Chemistry.

[47]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[48]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1997, The Journal of Biological Chemistry.

[49]  M. Loessner,et al.  Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes , 1995, Molecular microbiology.

[50]  J. Strominger,et al.  Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Model,et al.  Cell wall sorting signals in surface proteins of gram‐positive bacteria. , 1993, The EMBO journal.

[52]  E. Díaz,et al.  Carboxy-terminal deletion analysis of the major pneumococcal autolysin , 1994, Journal of bacteriology.

[53]  S. Norioka,et al.  Bacteriolytic activity and specificity of Achromobacter beta-lytic protease. , 1998, Journal of biochemistry.

[54]  P. Cossart,et al.  InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association , 1997, Molecular microbiology.

[55]  R. Jayaswal,et al.  Molecular analysis of lytic genes of bacteriophage 80α of Staphylococcus aureus , 1997 .

[56]  Sandeep K. Gupta,et al.  Improving the Practical Space and Time Efficiency of the Shortest-Paths Approach to Sum-of-Pairs Multiple Sequence Alignment , 1995, J. Comput. Biol..

[57]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1998, The Journal of Biological Chemistry.

[58]  J. H. Lancaster,et al.  Lysostaphin endopeptidase-catalysed transpeptidation reactions of the imino-transfer type. , 1977, The Biochemical journal.

[59]  M. Loessner,et al.  Three Bacillus cereus bacteriophage endolysins are unrelated but reveal high homology to cell wall hydrolases from different bacilli , 1997, Journal of bacteriology.

[60]  D. Tipper,et al.  Structures of the cell wall peptidoglycans of Staphylococcus epidermidis Texas 26 and Staphylococcus aureus Copenhagen. I. Chain length and average sequence of cross-bridge peptides. , 1969, Biochemistry.

[61]  M. Loessner,et al.  The two-component lysis system of Staphylococcus aureus bacteriophage Twort: a large TTG-start holin and an associated amidase endolysin. , 1998, FEMS microbiology letters.

[62]  J. Sánchez-Puelles,et al.  Cloning and expression of gene fragments encoding the choline-binding domain of pneumococcal murein hydrolases. , 1990, Gene.