Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways.

[1]  Tong Wu,et al.  Cyclooxygenase-2-derived prostaglandin E2 promotes human cholangiocarcinoma cell growth and invasion through EP1 receptor-mediated activation of the epidermal growth factor receptor and Akt. , 2015, The Journal of Biological Chemistry.

[2]  Kosei Maemura,et al.  Molecular mechanism of cholangiocarcinoma carcinogenesis , 2014, Journal of hepato-biliary-pancreatic sciences.

[3]  J. Fitzgibbon,et al.  Investigational epigenetically targeted drugs in early phase trials for the treatment of haematological malignancies , 2014, Expert opinion on investigational drugs.

[4]  K. Ross,et al.  Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer , 2014, Nature.

[5]  Hao Yin,et al.  CRISPR-mediated direct mutation of cancer genes in the mouse liver , 2014, Nature.

[6]  Y. Totoki,et al.  Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma , 2014, Hepatology.

[7]  Jin‐Young Jang,et al.  22q11-q13 as a hot spot for prediction of disease-free survival in bile duct cancer: integrative analysis of copy number variations. , 2014, Cancer genetics.

[8]  G. Riggins,et al.  Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells , 2014, Tumor Biology.

[9]  Eric W. Klee,et al.  Integrated Genomic Characterization Reveals Novel, Therapeutically Relevant Drug Targets in FGFR and EGFR Pathways in Sporadic Intrahepatic Cholangiocarcinoma , 2014, PLoS genetics.

[10]  Christopher R. Schmidt,et al.  Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway , 2014, Hepatology.

[11]  G. Gores,et al.  Pathogenesis, diagnosis, and management of cholangiocarcinoma. , 2013, Gastroenterology.

[12]  Timothy M Pawlik,et al.  The frequency of KRAS and BRAF mutations in intrahepatic cholangiocarcinomas and their correlation with clinical outcome. , 2013, Human pathology.

[13]  Swe Swe Myint,et al.  Exome sequencing identifies distinct mutational patterns in liver fluke–related and non-infection-related bile duct cancers , 2013, Nature Genetics.

[14]  T. Pawlik,et al.  Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas , 2013, Nature Genetics.

[15]  S. Lowe,et al.  Mouse model of intrahepatic cholangiocarcinoma validates FIG–ROS as a potent fusion oncogene and therapeutic target , 2013, Proceedings of the National Academy of Sciences.

[16]  Jeffrey A. Engelman,et al.  Tyrosine kinase gene rearrangements in epithelial malignancies , 2013, Nature Reviews Cancer.

[17]  S. Thorgeirsson,et al.  Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. , 2013, Gastroenterology.

[18]  Jesse S. Voss,et al.  Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions. , 2013, Human pathology.

[19]  Geraint T. Williams,et al.  PTEN loss and KRAS activation cooperate in murine biliary tract malignancies , 2013, The Journal of pathology.

[20]  Nickolay A. Khazanov,et al.  Identification of targetable FGFR gene fusions in diverse cancers. , 2013, Cancer discovery.

[21]  Maylee Hsu,et al.  KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas , 2013, Cancer.

[22]  Rameen Beroukhim,et al.  Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. , 2013, Gastroenterology.

[23]  Sayaka Sekiya,et al.  Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. , 2012, The Journal of clinical investigation.

[24]  Lincoln D. Stein,et al.  Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes , 2012, Nature.

[25]  Erik Schrumpf,et al.  Novel target genes and a valid biomarker panel identified for cholangiocarcinoma , 2012, Epigenetics.

[26]  H. Clevers,et al.  Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors , 2012, Nature.

[27]  G. Gores,et al.  Cholangiocarcinomas can originate from hepatocytes in mice. , 2012, The Journal of clinical investigation.

[28]  B. Li,et al.  Hepatitis viruses infection and risk of intrahepatic cholangiocarcinoma: evidence from a meta-analysis , 2012, BMC Cancer.

[29]  Tong Wu,et al.  MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. , 2012, Gastroenterology.

[30]  Derek Y. Chiang,et al.  Mutations in Isocitrate Dehydrogenase 1 and 2 Occur Frequently in Intrahepatic Cholangiocarcinomas and Share Hypermethylation Targets with Glioblastomas , 2012, Oncogene.

[31]  Bin Tean Teh,et al.  Exome sequencing of liver fluke–associated cholangiocarcinoma , 2012, Nature Genetics.

[32]  S. Thorgeirsson,et al.  Genetic profiling of intrahepatic cholangiocarcinoma , 2012, Current opinion in gastroenterology.

[33]  A. Zhu,et al.  Kras(G12D) and p53 mutation cause primary intrahepatic cholangiocarcinoma. , 2012, Cancer research.

[34]  Justin L. Mott,et al.  miR‐25 targets TNF‐related apoptosis inducing ligand (TRAIL) death receptor‐4 and promotes apoptosis resistance in cholangiocarcinoma , 2012, Hepatology.

[35]  Hui Li,et al.  MicroRNA-421 functions as an oncogenic miRNA in biliary tract cancer through down-regulating farnesoid X receptor expression. , 2012, Gene.

[36]  Liu Xiaofang,et al.  Correlation between promoter methylation of p14ARF, TMS1/ASC, and DAPK, and p53 mutation with prognosis in cholangiocarcinoma , 2012, World Journal of Surgical Oncology.

[37]  M. Takamura,et al.  Hepatocellular carcinoma with progenitor cell features distinguishable by the hepatic stem/progenitor cell marker NCAM. , 2011, Cancer letters.

[38]  K. Unger,et al.  Array comparative genomic hybridization identifies novel potential therapeutic targets in cholangiocarcinoma. , 2011, HPB : the official journal of the International Hepato Pancreato Biliary Association.

[39]  D. Calvisi,et al.  Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. , 2011, Gastroenterology.

[40]  M. Asaka,et al.  RNF43 interacts with NEDL1 and regulates p53-mediated transcription. , 2011, Biochemical and biophysical research communications.

[41]  Jian Yu,et al.  Survey of Tyrosine Kinase Signaling Reveals ROS Kinase Fusions in Human Cholangiocarcinoma , 2011, PloS one.

[42]  Jing Xu,et al.  Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. , 2010, World journal of hepatology.

[43]  P. A. Futreal,et al.  Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma , 2010, Nature.

[44]  Richard A. Moore,et al.  ARID1A mutations in endometriosis-associated ovarian carcinomas. , 2010, The New England journal of medicine.

[45]  Tian-Li Wang,et al.  Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma , 2010, Science.

[46]  M. Wilm,et al.  Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB , 2010, Nature.

[47]  Mark D. Johnson,et al.  The Imprinted Gene PEG3 Inhibits Wnt Signaling and Regulates Glioma Growth* , 2010, The Journal of Biological Chemistry.

[48]  Ximing J. Yang,et al.  p38delta/MAPK13 as a diagnostic marker for cholangiocarcinoma and its involvement in cell motility and invasion , 2009, International journal of cancer.

[49]  Y. Mizuguchi,et al.  MicroRNA profiling of human intrahepatic cholangiocarcinoma cell lines reveals biliary epithelial cell-specific microRNAs. , 2009, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi.

[50]  B. Sander,et al.  Pattern of chromosomal aberrations in primary liver cancers identified by comparative genomic hybridization. , 2009, Human pathology.

[51]  G. Gores,et al.  MicroRNA‐21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3 , 2009, Hepatology.

[52]  L. Roberts,et al.  Epigenetic DNA hypermethylation in cholangiocarcinoma: potential roles in pathogenesis, diagnosis and identification of treatment targets , 2007, Liver international : official journal of the International Association for the Study of the Liver.

[53]  M. Matsuda,et al.  Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin , 2007, Hepatology.

[54]  Banchob Sripa,et al.  Liver Fluke Induces Cholangiocarcinoma , 2007, PLoS medicine.

[55]  T. Tsukamoto,et al.  Chromosomal instability by β-catenin/TCF transcription in APC or β-catenin mutant cells , 2007, Oncogene.

[56]  T. Patel,et al.  The MicroRNA let-7a Modulates Interleukin-6-dependent STAT-3 Survival Signaling in Malignant Human Cholangiocytes* , 2007, Journal of Biological Chemistry.

[57]  T. Limpaiboon,et al.  Prognostic significance of microsatellite alterations at 1p36 in cholangiocarcinoma. , 2006, World journal of gastroenterology.

[58]  M. Miwa,et al.  Amplification of D22S283 as a favorable prognostic indicator in liver fluke related cholangiocarcinoma. , 2006, World journal of gastroenterology.

[59]  T. Limpaiboon,et al.  Amplification of chromosome 21q22.3 harboring trefoil factor family genes in liver fluke related cholangiocarcinoma is associated with poor prognosis. , 2006, World journal of gastroenterology.

[60]  G. Gores,et al.  Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. , 2006, The Journal of clinical investigation.

[61]  R. DePinho,et al.  Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice. , 2006, Cancer research.

[62]  Tushar Patel,et al.  Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. , 2006, Gastroenterology.

[63]  S. Holt,et al.  erbB-2/neu transformed rat cholangiocytes recapitulate key cellular and molecular features of human bile duct cancer. , 2005, Gastroenterology.

[64]  Pawel Stankiewicz,et al.  Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed Phenotypes , 2005, PLoS genetics.

[65]  K. McGlynn,et al.  Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. , 2005, Gastroenterology.

[66]  J. Herman,et al.  Promoter methylation profiles of tumor suppressor genes in intrahepatic and extrahepatic cholangiocarcinoma , 2005, Modern Pathology.

[67]  Chien-Hua Chen,et al.  Relation of hepatolithiasis to helminthic infestation , 2005, Journal of gastroenterology and hepatology.

[68]  K. Mizumoto,et al.  Immunohistochemical Study of DPC4 and p53 Proteins in Gallbladder and Bile Duct Cancers , 2004, World Journal of Surgery.

[69]  R. Semba,et al.  Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: a model of inflammation-mediated carcinogenesis. , 2004, Nitric oxide : biology and chemistry.

[70]  R. Semba,et al.  Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase. , 2004, Carcinogenesis.

[71]  H. El‐Serag,et al.  The epidemiology of cholangiocarcinoma. , 2004, Seminars in liver disease.

[72]  Keara M. Lane,et al.  Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21) , 2003, Genes, chromosomes & cancer.

[73]  F. Sommerer,et al.  Mutations of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma , 2003, Gut.

[74]  M. Cleary,et al.  Novel SWI/SNF Chromatin-Remodeling Complexes Contain a Mixed-Lineage Leukemia Chromosomal Translocation Partner , 2003, Molecular and Cellular Biology.

[75]  A. Rashid,et al.  K-ras mutation, p53 overexpression, and microsatellite instability in biliary tract cancers: a population-based study in China. , 2002, Clinical cancer research : an official journal of the American Association for Cancer Research.

[76]  Hwoong-Yong Jung,et al.  Aberrant CpG island methylation of multiple genes in intrahepatic cholangiocarcinoma. , 2002, The American journal of pathology.

[77]  F. Sommerer,et al.  Genetic and epigenetic alterations of the INK4a–ARF pathway in cholangiocarcinoma , 2002, The Journal of pathology.

[78]  M. Tsuneyoshi,et al.  c‐erbB‐2 and c‐Met expression relates to cholangiocarcinogenesis and progression of intrahepatic cholangiocarcinoma , 2002, Histopathology.

[79]  P. Vatanasapt,et al.  Cancer control in Thailand. , 2002, Japanese journal of clinical oncology.

[80]  Y. Rao,et al.  Signal Transduction in Neuronal Migration Roles of GTPase Activating Proteins and the Small GTPase Cdc42 in the Slit-Robo Pathway , 2001, Cell.

[81]  C. Ihm,et al.  Genetic alterations in hepatocellular carcinoma and intrahepatic cholangiocarcinoma. , 2001, Cancer genetics and cytogenetics.

[82]  A. Tannapfel,et al.  Frequency of p16INK4A alterations and k-ras mutations in intrahepatic cholangiocarcinoma of the liver , 2000, Gut.

[83]  X. Wu,et al.  Peg3/Pw1 promotes p53-mediated apoptosis by inducing Bax translocation from cytosol to mitochondria. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[84]  K. Chayama,et al.  Incidence of primary cholangiocellular carcinoma of the liver in Japanese patients with hepatitis C virus–related cirrhosis , 2000, Cancer.

[85]  R. Reddel,et al.  p16(INK4a) and the control of cellular proliferative life span. , 1999, Carcinogenesis.

[86]  J. Massagué,et al.  Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways , 1996, Nature.

[87]  G. Crabtree,et al.  Diversity and specialization of mammalian SWI/SNF complexes. , 1996, Genes & development.

[88]  S. Tannenbaum,et al.  DNA damage by nitric oxide. , 1996, Chemical research in toxicology.

[89]  S. Hanai,et al.  Mutations of p16Ink4/CDKN2 and p15Ink4B/MTS2 genes in biliary tract cancers. , 1995, Cancer research.

[90]  Michael R. Green,et al.  Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex , 1994, Nature.

[91]  B. Sripa,et al.  Luteolin arrests cell cycling, induces apoptosis and inhibits the JAK/STAT3 pathway in human cholangiocarcinoma cells. , 2014, Asian Pacific journal of cancer prevention : APJCP.

[92]  Jeffrey W. Clark,et al.  Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. , 2012, The oncologist.

[93]  F. Vleggaar,et al.  High lifetime risk of cancer in primary sclerosing cholangitis. , 2009, Journal of hepatology.

[94]  G. Gores,et al.  Sustained IL-6/STAT-3 signaling in cholangiocarcinoma cells due to SOCS-3 epigenetic silencing. , 2007, Gastroenterology.

[95]  D. Wink,et al.  Direct and indirect effects of nitric oxide in chemical reactions relevant to biology. , 1996, Methods in enzymology.

[96]  S. Hirohashi,et al.  Cholangiocarcinomas in japanese and thai patients: Difference in etiology and incidence of point mutation of the c‐KI‐ras proto‐oncogene , 1992, Molecular carcinogenesis.