Single- and multi-objective game-benchmark for evolutionary algorithms
暂无分享,去创建一个
Pascal Kerschke | Vanessa Volz | Boris Naujoks | Tea Tusar | B. Naujoks | P. Kerschke | Vanessa Volz | Tea Tušar
[1] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[2] Olivier Teytaud,et al. Exploring the MLDA benchmark on the nevergrad platform , 2019, GECCO.
[3] Jonathan E. Fieldsend,et al. A Suite of Computationally Expensive Shape Optimisation Problems Using Computational Fluid Dynamics , 2018, PPSN.
[4] Dimo Brockhoff,et al. Mixed-integer benchmark problems for single- and bi-objective optimization , 2019, GECCO.
[5] Simon M. Lucas,et al. The N-Tuple bandit evolutionary algorithm for automatic game improvement , 2017, 2017 IEEE Congress on Evolutionary Computation (CEC).
[6] Heike Trautmann,et al. Multimodality in Multi-objective Optimization - More Boon than Bane? , 2019, EMO.
[7] Julian Togelius,et al. Evolving levels for Super Mario Bros using grammatical evolution , 2012, 2012 IEEE Conference on Computational Intelligence and Games (CIG).
[8] Günter Rudolph,et al. Demonstrating the Feasibility of Automatic Game Balancing , 2016, GECCO.
[9] Julian Togelius,et al. The Mario AI Championship 2009-2012 , 2013, AI Mag..
[10] Anne Auger,et al. COCO: The Bi-objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite , 2016, ArXiv.
[11] Bernd Bischl,et al. Exploratory landscape analysis , 2011, GECCO '11.
[12] Julian Togelius,et al. The search-based approach , 2016 .
[13] Vanessa Volz,et al. Uncertainty Handling in Surrogate Assisted Optimisation of Games , 2019, KI - Künstliche Intelligenz.
[14] Tušar. On Using Real-World Problems for Benchmarking Multiobjective Optimization Algorithms , 2019 .
[15] Tom Schaul,et al. StarCraft II: A New Challenge for Reinforcement Learning , 2017, ArXiv.
[16] Santiago Ontañón,et al. Understanding mario: an evaluation of design metrics for platformers , 2017, FDG.
[17] Heike Trautmann,et al. Automated Algorithm Selection on Continuous Black-Box Problems by Combining Exploratory Landscape Analysis and Machine Learning , 2017, Evolutionary Computation.
[18] Simon M. Lucas,et al. Evolving mario levels in the latent space of a deep convolutional generative adversarial network , 2018, GECCO.
[19] Alessandro Canossa,et al. Towards a Procedural Evaluation Technique: Metrics for Level Design , 2015, FDG.
[20] Anne Auger,et al. COCO: a platform for comparing continuous optimizers in a black-box setting , 2016, Optim. Methods Softw..
[21] Julian Togelius,et al. The Mario AI Championship , 2010, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.
[22] Anne Auger,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions , 2009 .
[23] Mike Preuss,et al. Orchestrating Game Generation , 2019, IEEE Transactions on Games.
[24] Marco Laumanns,et al. Scalable Test Problems for Evolutionary Multiobjective Optimization , 2005, Evolutionary Multiobjective Optimization.