Results are presented for electron beam transport experiments in a 1-m-long straight section consisting of a solenoid and five short printed-circuit quadrupoles. A linear computer code for rms envelope matching, SPOT, is used for channel design, while final simulations with more realistic elements are obtained with a $2\frac{1}{2}\mathrm{D}$ version of WARP, a particle-in-cell code. Reasonable agreement is found between calculations and the effective beam envelope obtained from pictures of the beam on a movable phosphor screen. The results validate, within experimental errors, the use of short magnetic quadrupoles for the transport of space-charge dominated beams. The straight section constitutes the prototype matching section for an electron recirculator to be built at the University of Maryland.