Regularized motion blur-kernel estimation with adaptive sparse image prior learning

This paper proposes a regularized negative log-marginal-likelihood minimization method for motion blur-kernel estimation, which is the core problem of blind motion deblurring. In contrast to existing approaches, the proposed method treats the blur-kernel as a deterministic parameter in a directed graphical model wherein, the sharp image is sparsely modeled by using a three-layer hierarchical Bayesian prior and the inverse noise variance is supposed distributed to the Gamma hyper-prior. By borrowing the ideas of mean filed approximation and iteratively reweighted least squares, the posterior distributions of the sharp image, the inverse noise variance and the hyper-parameters involved in the image prior, as well as the deterministic model parameters including the motion blur-kernel and those involved in the hyper-priors, are all estimated automatically for each blind motion deblurring problem. It is worthy to note that, the new approach relies on a strict minimization objective function, and learns a more adaptive sparse image prior while with considerably less implementation heuristics compared with existing motion blur-kernel estimation approaches. Experimental results on both benchmark and real-world motion blurred images demonstrate that the proposed method has achieved state-of-the-art or even better performance than the current blind motion deblurring approaches in terms of the image deblurring quality. The results also show that the proposed approach is robust to the size of the motion blur-kernel to a great extent. A new motion blur-kernel estimation method is proposed for blind image deblurring.The new method is formulated in a unified and rigorous optimization perspective.Sparse image priors are learned adaptively for each blind deblurring problem.The noise variance is automatically estimated unlike state-of-the art VB methods.The method achieves better performance in terms of deblurring effectiveness

[1]  Michael K. Ng,et al.  A Fast Total Variation Minimization Method for Image Restoration , 2008, Multiscale Model. Simul..

[2]  Michael J. Black,et al.  Fields of Experts , 2009, International Journal of Computer Vision.

[3]  Aggelos K. Katsaggelos,et al.  Bayesian Blind Deconvolution with General Sparse Image Priors , 2012, ECCV.

[4]  Rémi Gribonval,et al.  A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[5]  Rob Fergus,et al.  Fast Image Deconvolution using Hyper-Laplacian Priors , 2009, NIPS.

[6]  Bhaskar D. Rao,et al.  Perspectives on Sparse Bayesian Learning , 2003, NIPS.

[7]  William T. Freeman,et al.  Removing camera shake from a single photograph , 2006, SIGGRAPH 2006.

[8]  Adam Finkelstein,et al.  A no-reference metric for evaluating the quality of motion deblurring , 2013, ACM Trans. Graph..

[9]  Wotao Yin,et al.  Iteratively reweighted algorithms for compressive sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  William T. Freeman,et al.  What makes a good model of natural images? , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[12]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[13]  Haichao Zhang,et al.  Revisiting Bayesian blind deconvolution , 2013, J. Mach. Learn. Res..

[14]  Joan Bruna,et al.  Blind Deconvolution with Re-weighted Sparsity Promotion , 2013, ArXiv.

[15]  N. Yi,et al.  Bayesian LASSO for Quantitative Trait Loci Mapping , 2008, Genetics.

[16]  Frédo Durand,et al.  Understanding and evaluating blind deconvolution algorithms , 2009, CVPR.

[17]  K. Egiazarian,et al.  Blind image deconvolution , 2007 .

[18]  Robert D. Nowak,et al.  Majorization–Minimization Algorithms for Wavelet-Based Image Restoration , 2007, IEEE Transactions on Image Processing.

[19]  Rob Fergus,et al.  Blind deconvolution using a normalized sparsity measure , 2011, CVPR 2011.

[20]  Nikolas P. Galatsanos,et al.  Variational Bayesian Sparse Kernel-Based Blind Image Deconvolution With Student's-t Priors , 2009, IEEE Transactions on Image Processing.

[21]  Li Xu,et al.  Two-Phase Kernel Estimation for Robust Motion Deblurring , 2010, ECCV.

[22]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[23]  Bhaskar D. Rao,et al.  Variational EM Algorithms for Non-Gaussian Latent Variable Models , 2005, NIPS.

[24]  Yanning Zhang,et al.  Multi-Observation Blind Deconvolution with an Adaptive Sparse Prior , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Frédo Durand,et al.  Efficient marginal likelihood optimization in blind deconvolution , 2011, CVPR 2011.

[26]  Stephen Lin,et al.  Motion-aware noise filtering for deblurring of noisy and blurry images , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[27]  G. Parisi,et al.  Statistical Field Theory , 1988 .

[28]  Rafael Molina,et al.  Sparse Bayesian blind image deconvolution with parameter estimation , 2010, 2010 18th European Signal Processing Conference.

[29]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[30]  Frédo Durand,et al.  Understanding Blind Deconvolution Algorithms , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Sunghyun Cho,et al.  Fast motion deblurring , 2009, SIGGRAPH 2009.

[32]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[33]  Seungyong Lee,et al.  Registration Based Non‐uniform Motion Deblurring , 2012, Comput. Graph. Forum.

[34]  Jean Ponce,et al.  Non-uniform Deblurring for Shaken Images , 2012, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[35]  Aggelos K. Katsaggelos,et al.  Bayesian Compressive Sensing Using Laplace Priors , 2010, IEEE Transactions on Image Processing.

[36]  Bhaskar D. Rao,et al.  Latent Variable Bayesian Models for Promoting Sparsity , 2011, IEEE Transactions on Information Theory.

[37]  Luís B. Almeida,et al.  Blind and Semi-Blind Deblurring of Natural Images , 2010, IEEE Transactions on Image Processing.

[38]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[39]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[40]  A. Doucet,et al.  A Hierarchical Bayesian Framework for Constructing Sparsity-inducing Priors , 2010, 1009.1914.

[41]  Michael S. Brown,et al.  Richardson-Lucy deblurring for scenes under a projective motion path , 2014, Motion Deblurring.

[42]  Zhihui Wei,et al.  Multi-Parseval frame-based nonconvex sparse image deconvolution , 2012 .

[43]  Li Xu,et al.  Unnatural L0 Sparse Representation for Natural Image Deblurring , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Jian-Feng Cai,et al.  Framelet-Based Blind Motion Deblurring From a Single Image , 2012, IEEE Transactions on Image Processing.

[45]  Lawrence Carin,et al.  Bayesian Compressive Sensing , 2008, IEEE Transactions on Signal Processing.

[46]  Peyman Milanfar,et al.  Blind Deconvolution Using Alternating Maximum a Posteriori Estimation with Heavy-Tailed Priors , 2013, CAIP.

[47]  Ming C. Lin,et al.  Example-guided physically based modal sound synthesis , 2013, ACM Trans. Graph..

[48]  Yanning Zhang,et al.  Multi-image Blind Deblurring Using a Coupled Adaptive Sparse Prior , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Ming-Hsuan Yang,et al.  Deblurring Low-Light Images with Light Streaks , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Michael J. Black,et al.  Fields of Experts: a framework for learning image priors , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).