An Evolutionary Geometry Parametrization for Aerodynamic Shape Optimization

An Evolutionary Geometry Parametrization for Aerodynamic Shape Optimization Xiaocong Han Masters of Applied Science Graduate Department of Aerospace Engineering University of Toronto 2011 An evolutionary geometry parametrization is established to represent aerodynamic configurations. This geometry parametrization technique is constructed by integrating the classical B-spline formulation with the knot insertion algorithm. It is capable of inserting control points to a given parametrization without modifying its geometry. Taking advantage of this technique, a shape design problem can be solved as a sequence of optimizations from the basic parametrization to more refined parametrizations. Owing to the nature of the B-spline formulation, feasible parametrization refinements are not unique; guidelines based on sensitivity analysis and geometry constraints are developed to assist the automation of the proposed optimization sequence. Test cases involving airfoil optimization and induced drag minimization are solved adopting this method. Its effectiveness is demonstrated through comparisons with optimizations using uniform refined parametrizations.

[1]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[2]  L. Piegl Modifying the shape of rational B-splines. part2: surfaces , 1989 .

[3]  B. Kulfan Universal Parametric Geometry Representation Method , 2008 .

[4]  T. Pulliam,et al.  A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization , 2008 .

[5]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[6]  Jason E. Hicken,et al.  Globalization strategies for inexact-Newton solvers , 2009 .

[7]  V. Braibant,et al.  Shape optimal design using B-splines , 1984 .

[8]  J. Anderson,et al.  Fundamentals of Aerodynamics , 1984 .

[9]  Andy J. Keane,et al.  Concise Orthogonal Representation of Supercritical Airfoils , 2001 .

[10]  D. Zingg,et al.  Mesh Movement for a Discrete-Adjoint Newton-Krylov Algorithm for Aerodynamic Optimization , 2007 .

[11]  T. Pulliam,et al.  Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm , 2001 .

[12]  Jason E. Hicken,et al.  Induced-Drag Minimization of Nonplanar Geometries Based on the Euler Equations , 2010 .

[13]  Patrice Castonguay,et al.  SURVEY OF SHAPE PARAMETERIZATION TECHNIQUES AND ITS EFFECT ON THREE-DIMENSIONAL AERODYNAMIC SHAPE OPTIMIZATION , 2007 .

[14]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[15]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[16]  R. Duvigneau Adaptive Parameterization using Free-Form Deformation for Aerodynamic Shape Optimization , 2005 .

[17]  Jean-Antoine Désidéri,et al.  Multi-Level Parameterization for Shape Optimization in Aerodynamics and Electromagnetics using a Particle Swarm Optimization Algorithm , 2006 .

[18]  Ilan Kroo,et al.  DRAG DUE TO LIFT: Concepts for Prediction and Reduction , 2001 .

[19]  David W. Zingg,et al.  Toward Practical Aerodynamic Design Through Numerical Optimization , 2007 .

[20]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[21]  Jean-Antoine Désidéri,et al.  Nested and self-adaptive Bézier parameterizations for shape optimization , 2007, J. Comput. Phys..

[22]  Christian B Allen,et al.  High‐fidelity aerodynamic shape optimization of modern transport wing using efficient hierarchical parameterization , 2010 .

[23]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[24]  Massimiliano Martinelli,et al.  Multi-level gradient-based methods and parametrisation in aerodynamic shape design , 2008 .

[25]  Anu Vedantham,et al.  Aviation and the Global Atmosphere: A Special Report of IPCC Working Groups I and III , 1999 .

[26]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[27]  R. M. Hicks,et al.  Wing Design by Numerical Optimization , 1977 .

[28]  Marian Nemec,et al.  Optimal Shape Design Of Aerodynamic Configurations: A Newton-Krylov Approach , 2003 .

[29]  Jean-Antoine Désidéri,et al.  Free-form-deformation parameterization for multilevel 3D shape optimization in aerodynamics , 2003 .

[30]  Gao Zheng-hong,et al.  Effect of Shape Parameterization on Aerodynamic Shape Optimization , 2012 .

[31]  B. Mohammadi a New Optimal Shape Design Procedure for Inviscid and Viscous Turbulent Flows , 1997 .

[32]  Jean-Antoine Desideri,et al.  Towards Self-Adaptive Parameterization of Bézier Curves for Airfoil Aerodynamic Design , 2002 .

[33]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[34]  Kazuhiro Nakahashi,et al.  Aerodynamic Wing Optimization via Evolutionary Algorithms Based on Structured Coding , 2002 .

[35]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[36]  Jean-Antoine Desideri,et al.  Hierarchical Optimum-Shape Algorithms Using Embedded Bezier Parameterizations , 2003 .

[38]  J. Désidéri,et al.  Multi-Objective Optimization in CFD by Genetic Algorithms , 1999 .

[39]  Jean-Antoine Désidéri,et al.  Aerodynamic Shape Optimization using a Full and Adaptive Multilevel Algorithm , 2004 .

[40]  Bowen Zhong,et al.  An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm , 2007, World Congress on Engineering.

[41]  Andy J. Keane,et al.  A Study of Shape Parameterisation Methods for Airfoil Optimisation , 2004 .

[42]  Alain Dervieux,et al.  A hierarchical approach for shape optimization , 1994 .

[43]  D. Zingg,et al.  Newton-Krylov Algorithm for Aerodynamic Design Using the Navier-Stokes Equations , 2002 .

[44]  P. A. Newman,et al.  Approximation and Model Management in Aerodynamic Optimization with Variable-Fidelity Models , 2001 .

[45]  Domenico Quagliarella,et al.  Airfoil and wing design through hybrid optimization strategies , 1998 .

[46]  Jason E. Hicken,et al.  Aerodynamic Optimization Algorithm with Integrated Geometry Parameterization and Mesh Movement , 2010 .

[47]  Jason E. Hicken,et al.  Parallel Newton-Krylov Solver for the Euler Equations Discretized Using Simultaneous-Approximation Terms , 2008 .

[48]  Josef Hoschek,et al.  Intrinsic parametrization for approximation , 1988, Comput. Aided Geom. Des..