Kommunizierende Agenten: Gestische und natürlichsprachliche Interaktion

SummaryAn important scientific method within cognitive science consists in the synthesis of cognitive abilities, of forms of behavior by developing specific artificial agents. Many current approaches make use of the notion of an agent in order to develop concepts of cognitive behavior on different levels of abstraction. Basic properties of agents are: reactivity, autonomy, goal directed activity, and communication. This contribution examines the communicative aspect, i.e. the interaction by gesture or language and their integration, e.g. in identifying referents. Since we conceive communicating agents as systems able to synthesize such interactions as well as their integration, this will be illustrated with respect to two artificial systems. The GRAVIS system detects objects as well as pointing gestures of an instructor, and the camera agent is able to focus on specific objects. The CoRA system processes situated natural language instructions, and the simulated robot agent is able to integrate the use of language, perception and action. Finally we propose an integration of both approaches.ZusammenfassungEin wichtiger Forschungsansatz innerhalb der Kognitionswissenschaft besteht in der Synthese kognitiver Fähigkeiten und Verhaltensweisen durch den Bau geeigneter, künstlicher Systeme. Viele der in jüngerer Zeit verfolgten Ansätze nutzen dabei den Begriff des Agenten, um kognitives Verhalten auf unterschiedlichen Abstraktionsebenen zu konzeptualisieren. Grundeigenschaften von Agenten sind u.a. Reaktivität, Autonomie, Zielgerichtetheit und Kommunikationsfähigkeit. In dem vorliegenden Beitrag interessieren wir uns für die Ebene kommunikativen Verhaltens, bei der Gestik und Sprache zur Vermittlung eines Sachverhaltes zusammenwirken, und verstehen unter einem kommunizierenden Agenten ein System, das für solches Verhalten einen nennenswerten Kompetenzausschnitt realisiert. Wir stellen hierzu beispielhaft zwei Systeme vor. Das System GRAVIS demonstriert die Referenzierung von Objekten im Blickfeld eines Kamerakopfes durch Handzeigegestik eines Instrukteurs. Das System CoRA demonstriert die Verarbeitung sprachlicher Handlungsanweisungen im Kontext der Kooperation mit einem simulierten Roboter. Abschließend wird die Integration der beiden Ansätze diskutiert.

[1]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[2]  Helge Ritter,et al.  3D Real-time Tracking of Points of Interest based on Zero-disparity Filtering , 1998 .

[3]  Jan-Torsten Milde,et al.  CoRA - An Instructable robot , 1998, DARS.

[4]  Reinhard Fiehler Kommunikation und Kooperation : theoretische u. empirische Untersuchungen zur kommunikativen Organisation kooperativer Prozesse , 1980 .

[5]  Frans C. A. Groen,et al.  CNN: a neural architecture that learns multiple transformations of spatial representations , 1994 .

[6]  Jan-Torsten Milde,et al.  Action-Centered Communication with an Embedded Agent , 1998, FLAIRS Conference.

[7]  Luc Steels,et al.  The Origins of Syntax in Visually Grounded Robotic Agents , 1997, IJCAI.

[8]  Michael I. Jordan,et al.  Task Decomposition Through Competition in a Modular Connectionist Architecture: The What and Where Vision Tasks , 1990, Cogn. Sci..

[9]  Bart L. M. Happel,et al.  Design and evolution of modular neural network architectures , 1994, Neural Networks.

[10]  L. Weiskrantz,et al.  Thought Without Language , 1988 .

[11]  Helge J. Ritter,et al.  GREFIT: Visuelle Erkennung kontinuierlicher Handposten , 1998, GI Jahrestagung.

[12]  Mark C. Torrance,et al.  Natural communication with robots , 1994 .

[13]  Kenji Doya,et al.  Efficient Nonlinear Control with Actor-Tutor Architecture , 1996, NIPS.

[14]  Stefan Zadel,et al.  An Algorithm for Bootstrapping the Core of a Biologically Inspired Motor Control System , 1996, ICANN.

[15]  Nicholas R. Jennings,et al.  Agent Theories, Architectures, and Languages: A Survey , 1995, ECAI Workshop on Agent Theories, Architectures, and Languages.

[16]  Pascal Blanchet,et al.  An architecture for representing and learning behaviors by trial and error , 1994 .

[17]  David Chapman,et al.  What are plans for? , 1990, Robotics Auton. Syst..

[18]  Arthur C. Graesser,et al.  Is it an Agent, or Just a Program?: A Taxonomy for Autonomous Agents , 1996, ATAL.

[19]  Rodney A. Brooks,et al.  Challenges for complete creature architectures , 1991 .

[20]  S. Franklin Artificial Minds , 1995 .

[21]  Stephen Grossberg,et al.  A Self-Organizing Neural Network Architecture for Navigation Using Optic Flow , 1998, Neural Computation.

[22]  Bärbel Mertsching,et al.  Integration of Static and Dynamic Scene Features Guiding Visual Attention , 1997, DAGM-Symposium.

[23]  Michael Wooldridge,et al.  Intelligent Agents III , 1997 .

[24]  Paul F. M. J. Verschure,et al.  Optimizing Self-Organizing Control Architectures with Genetic Algorithms: The Interaction Between Natural Selection and Ontogenesis , 1992, PPSN.

[25]  Subutai Ahmad,et al.  Visit: an efficient computational model of human visual attention , 1992 .

[26]  R. Kirk Language, Thought, and Other Biological Categories , 1985 .

[27]  A. Clark Being There: Putting Brain, Body, and World Together Again , 1996 .

[28]  Jan-Torsten Milde,et al.  Situated Communication with Robots , 1999 .