Clique partitioning of interval graphs with submodular costs on the cliques
暂无分享,去创建一个
[1] Kathie Cameron,et al. A min-max relation for the partial q- colourings of a graph. Part II: Box perfection , 1989, Discret. Math..
[2] Vangelis Th. Paschos,et al. Weighted Coloring: further complexity and approximability results , 2006, Inf. Process. Lett..
[3] Yale T. Herer,et al. Characterizations of naturally submodular graphs: a polynomially solvable class of the TSP , 1995 .
[4] Gerd Finke,et al. Batch processing with interval graph compatibilities between tasks , 2005, Discret. Appl. Math..
[5] Jean Cardinal,et al. Minimum entropy coloring , 2005, J. Comb. Optim..
[6] M. Golummc. Algorithmic graph theory and perfect graphs , 1980 .
[7] Emmanuel Desgrippes. Coordination entre la production et la distribution dans une chaîne logistique , 2005 .
[8] D. de Werra,et al. Time slot scheduling of compatible jobs , 2007, J. Sched..
[9] M. Golumbic. CHAPTER 3 – Perfect Graphs , 1980 .
[10] Vangelis Th. Paschos,et al. Weighted Coloring: Further Complexity and Approximability Results , 2005, ICTCS.
[11] Mihalis Yannakakis,et al. The Maximum k-Colorable Subgraph Problem for Chordal Graphs , 1987, Inf. Process. Lett..
[12] Mourad Boudhar. Dynamic Scheduling on a Single Batch Processing Machine with Split Compatibility Graphs , 2003, J. Math. Model. Algorithms.
[13] Vangelis Th. Paschos,et al. Probabilistic Coloring of Bipartite and Split Graphs , 2005, ICCSA.
[14] Vincent Jost. Ordonnancement chromatique : polyèdres, complexité et classification , 2006 .
[15] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[16] R. Möhring. Algorithmic graph theory and perfect graphs , 1986 .
[17] J. Edmonds,et al. A Min-Max Relation for Submodular Functions on Graphs , 1977 .
[18] Noga Alon,et al. Source coding and graph entropies , 1996, IEEE Trans. Inf. Theory.
[19] Xuding Zhu,et al. A Coloring Problem for Weighted Graphs , 1997, Inf. Process. Lett..