Does apoplastic ascorbic acid enhance manganese tolerance of Vigna unguiculata and Phaseolus vulgaris

In cowpea (Vigna unguiculata), the development of manganese (Mn) toxicity is considered to be accompanied by the formation of reactive oxygen species, oxidized Mn, and phenoxy radicals in the leaf apoplast. Ascorbic acid (AA) is a common antioxidant in plants, and the oxidation of AA, particularly in the leaf apoplast, contributes to the first line of defence against several biotic and abiotic stress factors. The objective of the present study was to contribute to a better understanding of the role of AA in Mn leaf-tissue tolerance of cowpea and common bean (Phaseolus vulgaris). Five cowpea cultivars (cvs.) differed greatly in Mn tolerance, which was expressed in differences in numbers of brown spots on leaves and in peroxidase (POD) activity in the apoplastic washing fluid (AWF). In a Mn-sensitive cv., after 3 d of Mn treatment, brown spots were formed, and POD activities were increased, accompanied by a release of proteins into the apoplast. In the AWF, the concentration of AA and the ratio of AA : (AA+DHA) decreased already after 1 d, and to only 2% after 3 d. In the leaf tissue, the ratio was nearly unaffected, and the total AA+DHA content in the leaf tissue was even increased with advanced expression of Mn toxicity. The application of AA solutions in the range of 5–10 μM via the petiole slightly enhanced Mn tolerance as indicated by the reduction of brown spots (however inconsistently) and POD activity (consistently) in the AWF. Common bean cultivars differing in ozone tolerance, which has been reported to be due to a high AA availability in the leaf apoplast, were studied for their Mn tolerance. Clear differences in Mn tolerance between the cultivars existed, however, these differences were not related to their ozone tolerance. From these results, we conclude that the maintenance of sufficient AA levels in the leaf apoplast contribute to Mn tolerance, but does not fully explain genotypic differences in Mn tolerance in cowpea and common bean. Beeinflusst apoplastische Ascorbinsaure die Mangantoleranz von Vigna unguiculata und Phaseolus vulgaris? Fruhere Arbeiten weisen darauf hin, dass Mangan (Mn)-Toxizitat bei Cowpea (Vigna unguiculata) mit der Bildung von reaktiven Sauerstoffradikalen, oxidiertem Mn und Phenoxyradikalen im Blattapoplasten verbunden ist. Ascorbinsaure (AA) ist ein weit verbreitetes Antioxidationsmittel in Pflanzen. Die Oxidation von AA, insbesondere im Blattapoplasten, tragt zur primaren Abwehrreaktion von Pflanzen gegen verschiedene biotische und abiotische Stressfaktoren bei. Ziel dieser Untersuchung war es, zum besseren Verstandnis der Rolle von AA bei der Mn-Blattgewebetoleranz von Cowpea und Buschbohne (Phaseolus vulgaris) beizutragen. Funf Cowpea-Genotypen unterschieden sich stark in der Mn-Toleranz, was sich in Unterschieden in der Zahl brauner Punkte auf den Blattern und der Peroxidase (POD)-Aktivitat in der apoplastischen Waschflussigkeit (AWF) widerspiegelte. Bei einem Mn-empfindlichen Genotyp traten braune Punkte und eine erhohte POD-Aktivitat verbunden mit einer verstarkten Abgabe von Proteinen in den Apoplasten nach 3 Tagen Mn-Behandlung auf. In der AWF sanken die Konzentration von AA und das Verhaltnis AA : (AA+DHA) bereits nach einem Tag und bis auf 2 % nach 3 Tagen. Im Blattgewebe blieb dieses Verhaltnis praktisch unbeeinflusst und der Gesamt-(AA+DHA)-Gehalt stieg sogar mit zunehmender Auspragung von Mn-Toxizitat an. Die Applikation von AA-Losungen im Bereich von 5–10 μM uber den Blattstiel erhohte die Mn-Toleranz leicht, gemessen an der Verringerung des Auftretens von braunen Punkten (jedoch nicht konsistent) und der POD-Aktivitat in der AWF (konsistent). Buschbohnen-Genotypen mit unterschiedlicher Ozontoleranz, die auf einer unterschiedlichen AA-Verfugbarkeit im Blattapoplasten zuruckgefuhrt worden war, wurden auf ihre Mn-Toleranz untersucht. Zwischen den Genotypen bestanden deutliche Unterschiede in der Mn-Toleranz. Diese Unterschiede standen aber in keiner Beziehung zur ihrer Ozon-Toleranz. Auf der Basis der Ergebnisse schlussfolgern wir, dass die Aufrechterhaltung eines ausreichenden AA-Gehaltes zur Mn-Toleranz beitragt. Dies reicht aber nicht aus, um die genotypischen Unterschiede in der Mn-Toleranz bei Cowpea und Buschbohne hinreichend zu erklaren.

[1]  H. Braun,et al.  The Role of Hydrogen Peroxide-Producing and Hydrogen Peroxide-Consuming Peroxidases in the Leaf Apoplast of Cowpea in Manganese Tolerance1[W] , 2006, Plant Physiology.

[2]  C. Foyer,et al.  Antioxidant defences of the apoplast , 1998, Protoplasma.

[3]  W. Horst,et al.  Effect of light intensity on manganese toxicity symptoms and callose formation in cowpea (Vigna unguiculata (L.) Walp.) , 1992, Plant and Soil.

[4]  C. Sonneveld,et al.  Studies on the manganese uptake of lettuce on steam-sterilised glasshouse soils , 1975, Plant and Soil.

[5]  G. G. Gross,et al.  Involvement of malate, monophenols, and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.) , 2004, Planta.

[6]  E. Elstner,et al.  Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.) , 2004, Planta.

[7]  H. Braun,et al.  Effect of Manganese Toxicity on the Proteome of the Leaf Apoplast in Cowpea1 , 2003, Plant Physiology.

[8]  C. Foyer,et al.  Apoplastic ascorbate metabolism and its role in the regulation of cell signalling. , 2003, Current opinion in plant biology.

[9]  G. Pastori,et al.  Leaf Vitamin C Contents Modulate Plant Defense Transcripts and Regulate Genes That Control Development through Hormone Signaling Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010538. , 2003, The Plant Cell Online.

[10]  W. Horst,et al.  APOPLASTIC PEROXIDASES AND ASCORBATE ARE INVOLVED IN MANGANESE TOXICITY AND TOLERANCE OF VIGNA UNGUICULATA , 2003 .

[11]  K. Burkey,et al.  Factors that affect leaf extracellular ascorbic acid content and redox status , 2003 .

[12]  J. Barnes,et al.  Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone , 2003, Planta.

[13]  K. Burkey,et al.  Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast. , 2002, Physiologia plantarum.

[14]  G. Noga,et al.  Reduction of paraquat-induced oxidative stress in Phaseolus vulgaris and Malus domestica leaves by α-tocopherol , 2001 .

[15]  J. Hancock,et al.  Regulation of the Arabidopsis transcriptome by oxidative stress. , 2001, Plant physiology.

[16]  C. Foyer,et al.  Ascorbate function and associated transport systems in plants , 2000 .

[17]  N. Smirnoff,et al.  The control of ascorbic acid synthesis and turnover in pea seedlings. , 2000, Journal of experimental botany.

[18]  N. Smirnoff,et al.  Ascorbic acid: metabolism and functions of a multi-facetted molecule. , 2000, Current opinion in plant biology.

[19]  E. Siendones,et al.  Biosynthesis of ascorbic acid in kidney bean. L-galactono-gamma-lactone dehydrogenase is an intrinsic protein located at the mitochondrial inner membrane , 1999, Plant physiology.

[20]  W. Horst,et al.  Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. , 1999 .

[21]  L. Jouanin,et al.  Responses of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange , 1999 .

[22]  C. Foyer,et al.  ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control. , 1998, Annual review of plant physiology and plant molecular biology.

[23]  N. Smirnoff,et al.  The biosynthetic pathway of vitamin C in higher plants , 1998, Nature.

[24]  W. Van Camp,et al.  Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  L. Jouanin,et al.  Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants , 1998 .

[26]  G. Noctor Review article. Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants , 1998 .

[27]  H. Asard,et al.  The Ascorbate Carrier of Higher Plant Plasma Membranes Preferentially Translocates the Fully Oxidized (Dehydroascorbate) Molecule , 1997, Plant physiology.

[28]  K. Dietz Functions and Responses of the Leaf Apoplast Under Stress , 1997 .

[29]  R. Last,et al.  Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. Foyer,et al.  Ascorbate is the natural substrate for plant peroxidases , 1996, FEBS letters.

[31]  L. Jouanin,et al.  Overexpression of Glutathione Reductase but Not Glutathione Synthetase Leads to Increases in Antioxidant Capacity and Resistance to Photoinhibition in Poplar Trees , 1995, Plant physiology.

[32]  R. Dixon,et al.  Function of the oxidative burst in hypersensitive disease resistance. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Alex Levine,et al.  H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response , 1994, Cell.

[34]  H. Rennenberg,et al.  Protection from oxidative stress in transgenic plants. , 1994, Biochemical Society transactions.

[35]  E. Martinoia,et al.  Transport of Ascorbic and Dehydroascorbic Acids across Protoplast and Vacuole Membranes Isolated from Barley (Hordeum vulgare L. cv Gerbel) Leaves , 1994, Plant physiology.

[36]  C. Foyer,et al.  Protection against oxygen radicals: an important defence mechanism studied in transgenic plants , 1994 .

[37]  A. Polle,et al.  The Influence of Apoplastic Ascorbate on the Activities of Cell Wall-Associated Peroxidase and NADH Oxidase in Needles of Norway Spruce (Picea abies L.) , 1994 .

[38]  U. Takahama Redox state of ascorbic acid in the apoplast of stems of Kalanchoë daigremontiana , 1993 .

[39]  J. Oertli,et al.  Vitamin C (ascorbic acid) : uptake and metabolism by soybean , 1993 .

[40]  U. Heber,et al.  Role of Ascorbate in Detoxifying Ozone in the Apoplast of Spinach (Spinacia oleracea L.) Leaves , 1993, Plant physiology.

[41]  T. Oniki,et al.  Regulation of Peroxidase-Dependent Oxidation of Phenolics in the Apoplast of Spinach Leaves by Ascorbate , 1992 .

[42]  E. Lee,et al.  Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress. , 1991, Chronobiology international.

[43]  H. Greppin,et al.  Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure , 1988 .

[44]  W. Horst The Physiology of Manganese Toxicity , 1988 .

[45]  T. Horiguchi Mechanism of manganese toxicity and tolerance of plants. , 1987 .

[46]  H. Greppin,et al.  Balance between anionic and cationic extracellular peroxidase activities in Sedum album leaves after ozone exposure. Analysis by high‐performance liquid chromatography , 1986 .

[47]  H. Greppin,et al.  A two‐step control of basic and acidic peroxidases and its significance for growth and development , 1985 .

[48]  Edward H. Lee,et al.  Differential ozone tolerance in soybean and snapbeans: Analysis of ascorbic acid in O3-susceptible and O3-resistant cultivars by high-performance liquid chromatography , 1984 .

[49]  W. Horst,et al.  Symptome von Mangan‐Überschuß bei Bohnen (Phaseolus vulgaris) , 1978 .

[50]  D. Heenan,et al.  Tolerance of Soybean Cultivars to Manganese Toxicity1 , 1976 .

[51]  I. Rose,et al.  Variation in Susceptibility to Manganese Toxicity in 30 Soybean Genotypes 1 , 1975 .

[52]  R. H. Kenten,et al.  Manganese oxidation in the pea plant (Pisum sativum L.) grown under conditions of manganese toxicity. , 1957, The Biochemical journal.

[53]  R. H. Kenten,et al.  The oxidation of manganese by peroxidase systems. , 1950, The Biochemical journal.