Extended Navigation Capabilities for a Future Mars Science Helicopter Concept

This paper introduces an autonomous navigation system suitable for supporting a future Mars Science Helicopter concept. This mission concept requires low-drift localization to reach science targets far apart from each other on the surface of Mars. Our modular state estimator achieves this through range, solar and Visual-Inertial Odometry (VIO). We propose a novel range update model to constrain visual-inertial scale drift in the absence of motion excitation using a single-point static laser range finder, that is designed to work over unknown terrain topography. We also develop a sun sensor measurement model to constrain VIO yaw drift. Solar VIO performance is evaluated in a simulation environment in a Monte Carlo analysis. Range-VIO is demonstrated in flight in real time on 1 core of a Qualcomm Snapdragon 820 processor, which is the successor of the NASA's Mars Helicopter flight processor.

[1]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  John Enright,et al.  Visual odometry aided by a sun sensor and inclinometer , 2011, 2011 Aerospace Conference.

[3]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[4]  Roland Brockers,et al.  Vision-Based Navigation for the NASA Mars Helicopter , 2019, AIAA Scitech 2019 Forum.

[5]  Davide Scaramuzza,et al.  SVO: Fast semi-direct monocular visual odometry , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[6]  Rohan Thakker,et al.  Thermal-Inertial Odometry for Autonomous Flight Throughout the Night , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[7]  Dimitrios G. Kottas,et al.  Detecting and dealing with hovering maneuvers in vision-aided inertial navigation systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  N. Trawny,et al.  Indirect Kalman Filter for 3 D Attitude Estimation , 2005 .

[9]  Roland Siegwart,et al.  Robust visual inertial odometry using a direct EKF-based approach , 2015, IROS 2015.

[10]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[11]  J. Balaram,et al.  Mars Helicopter Technology Demonstrator , 2018 .

[12]  James R. Wertz,et al.  Space Mission Analysis and Design , 1992 .

[13]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[14]  Tom Drummond,et al.  Faster and Better: A Machine Learning Approach to Corner Detection , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Stergios I. Roumeliotis,et al.  A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[16]  Roland Siegwart,et al.  Real-time onboard visual-inertial state estimation and self-calibration of MAVs in unknown environments , 2012, 2012 IEEE International Conference on Robotics and Automation.

[17]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[18]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[19]  Stergios I. Roumeliotis,et al.  Unobservable Directions of VINS Under Special Motions , 2016 .

[20]  Daniel Cremers,et al.  Direct Sparse Visual-Inertial Odometry Using Dynamic Marginalization , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Davide Scaramuzza,et al.  A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Antoni Grau,et al.  Vision-based SLAM system for MAVs in GPS-denied environments , 2017 .

[23]  Roland Siegwart,et al.  Real-time metric state estimation for modular vision-inertial systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[24]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[25]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Brett Kennedy,et al.  Design and analysis of a sun sensor for planetary rover absolute heading detection , 2001, IEEE Trans. Robotics Autom..