Unilateral Analysis and Duality
暂无分享,去创建一个
[1] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[2] M. Hestenes. Optimization Theory: The Finite Dimensional Case , 1975 .
[3] Semen S. Kutateladze,et al. MINKOWSKI DUALITY AND ITS APPLICATIONS , 1972 .
[4] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[5] H. Komiya,et al. Perfect duality for convexlike programs , 1982 .
[6] C. Goh,et al. Nonlinear Lagrangian Theory for Nonconvex Optimization , 2001 .
[7] Yuri G. Evtushenko,et al. Exact auxiliary functions , 1990 .
[8] J. P. Penot. DUALITY FOR RADIANT AND SHADY PROGRAMS , 1997 .
[9] J. Penot,et al. Lagrangian Approach to Quasiconvex Programing , 2003 .
[10] J. F. Bonnans. Théorie de la pénalisation exacte , 1990 .
[11] Ivan Singer. Some relations between dualities, polarities, coupling functionals, and conjugations , 1986 .
[12] Thomas L. Magnanti,et al. Fenchel and Lagrange duality are equivalent , 1974, Math. Program..
[13] Xiaoqi Yang,et al. Lagrange-type Functions in Constrained Non-Convex Optimization , 2003 .
[14] S. Dolecki,et al. Exact Penalties for Local Minima , 1979 .
[15] Jean-Paul Penot,et al. The bearing of duality on microeconomics , 2005 .
[16] A. Rubinov. Abstract Convexity and Global Optimization , 2000 .
[17] J. Tolle,et al. Differential Stability in Nonlinear Programming , 1977 .
[18] A. P. Shveidel,et al. Seperability of Star-Shaped Sets and its Application to an Optimization Problem , 1997 .
[19] Michel Volle. Conjugaison par tranches , 1985 .
[20] Diethard Pallaschke,et al. Foundations of Mathematical Optimization , 1997 .
[21] R. Tyrrell Rockafellar,et al. Lagrange Multipliers and Optimality , 1993, SIAM Rev..
[22] Juan Enrique Martínez-Legaz,et al. Dualities between complete lattices , 1990 .
[23] J. Penot,et al. Multipliers and Generalized Derivatives of Performance Functions , 1997 .
[24] Ky Pan. 5. On Systems of Linear Inequalities , 1957 .
[25] Juan Enrique Martínez-Legaz,et al. Subdifferentials with respect to dualities , 1995, Math. Methods Oper. Res..
[26] W. Oettli,et al. Augmented Lagrangians for General Side Constraints , 2000 .
[27] Daniel Ralph,et al. Applying Generalised Convexity Notions to Jets , 1998 .
[28] Yair Censor,et al. Recent Developments in Optimization Theory and Nonlinear Analysis: Ams/Imu Special Session on Optimization and Nonlinear Analysis, May 24-26, 1995, Jerusalem, Israel , 1997 .
[29] S. Simons. Minimax and monotonicity , 1998 .
[30] A. Frank. An Algorithm for Submodular Functions on Graphs , 1982 .
[31] Werner Oettli,et al. Conjugate Functions for Convex and Nonconvex Duality , 1998, J. Glob. Optim..
[32] X. Q. Yang,et al. Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..
[33] Masami Fujimori. On systems of linear inequalities , 2003 .
[34] Xiaoqi Yang,et al. Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .
[35] Alfred Auslender,et al. Existence of optimal solutions and duality results under weak conditions , 2000, Math. Program..
[36] Jean-Paul Penot. Rotundity, smoothness and duality , 2003 .
[37] Pham Huu Sach,et al. Generalized Monotonicity of Subdifferentials and Generalized Convexity , 1997 .
[38] Jean-Paul Penot,et al. Lower Subdifferentiability and Integration , 2002 .
[39] M. Sion. On general minimax theorems , 1958 .
[40] S. Simons. A flexible minimax theorem , 1994 .
[41] J. Penot. Generalized Convexity in the Light of Nonsmooth Analysis , 1995 .
[42] Separability of Star-Shaped Sets with Respect to Infinity , 2000 .
[43] Jean-Paul Penot,et al. Surrogate Programming and Multipliers in Quasi-convex Programming , 2003, SIAM J. Control. Optim..
[44] Vitali G. Zhadan,et al. General lagrange-type functions in constrained global optimization part II: Exact auxiliary functions , 2001 .
[45] Jean-Paul Penot,et al. Multipliers and general Lagrangians , 2005 .
[46] B. Simsek,et al. Conjugate quasiconvex nonnegative functions , 1995 .
[47] Satoru Fujishige. Theory of submodular programs: A fenchel-type min-max theorem and subgradients of submodular functions , 1984, Math. Program..
[48] Duan Li,et al. Nonlinear Lagrangian Methods in Constrained Nonlinear Optimization , 2001 .
[49] A. M. Rubinov. Radiant Sets and Their Gauges , 2000 .
[50] Jean-Pierre Crouzeix. La convexité généralisée en économie mathématique , 2003 .
[52] Alexander M. Rubinov,et al. Downward Sets and their separation and approximation properties , 2002, J. Glob. Optim..
[53] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[54] G. Foussereau,et al. Comptes rendus des séances de l'Académie des Sciences et annales de chimie et de physique; 1892 , 1893 .
[55] Jean-Paul Penot,et al. On Quasi-Convex Duality , 1990, Math. Oper. Res..
[56] E. Giner,et al. Kuhn-Tucker Conditions and Integral Functionals , 2001 .
[57] A. M. Rubinov,et al. Increasing Convex-Along-Rays Functions with Applications to Global Optimization , 1999 .
[58] R. Rockafellar. Conjugate Duality and Optimization , 1987 .
[59] B. N. Pshenichnyi. Necessary Conditions for an Extremum , 1971 .
[60] Nonconvex duality-stability relations pertaining to the interior penalty function method , 1980 .
[61] Xiaoqi Yang,et al. A Unified Augmented Lagrangian Approach to Duality and Exact Penalization , 2003, Math. Oper. Res..
[62] A. Cambini,et al. Generalized convexity and fractional programming with economic applications : proceedings of the International Workshop on "Generalized Concavity, Fractional Programming, and Economic Applications" held at the University of Pisa, Italy, May 30-June 1, 1988 , 1990 .
[63] Phan Thien Thach. Global optimality criterion and a duality with a zero gap in nonconvex optimization , 1993 .
[64] Alexander Rubinov,et al. Lipschitz programming via increasing convex-along-rays functions * , 1999 .
[65] J. Aubin. Mathematical methods of game and economic theory , 1979 .
[66] Andrew Craig Eberhard,et al. Jets, generalised convexity, proximal normality and differences of functions , 1998 .
[67] Martin Grötschel,et al. Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.
[68] J. Penot,et al. Characterization of Solution Sets of Quasiconvex Programs , 2003 .
[69] X. X. Huang,et al. A Nonlinear Lagrangian Approach to Constrained Optimization Problems , 2000, SIAM J. Optim..
[70] A. Rubinov,et al. The space of star-shaped sets and its applications in nonsmooth optimization , 1986 .
[71] Jacob Flachs. Global saddle-point duality for quasi-concave programs, II , 1982, Math. Program..
[72] J. Gauvin,et al. Directional derivative of the value function in parametric optimization , 1991 .
[73] Laurence A. Wolsey,et al. An elementary survey of general duality theory in mathematical programming , 1981, Math. Program..
[74] J. P. Crouzeix. Conjugacy in quasiconvex analysis , 1977 .
[75] F. Giannessi. Theorems of the alternative and optimality conditions , 1984 .
[76] Jean-Paul Penot,et al. On Strongly Convex and Paraconvex Dualities , 1990 .
[77] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[78] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[79] Jane J. Ye,et al. Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..
[80] Juan Enrique Martínez-Legaz,et al. Simplified Global Optimality Conditions in Generalized Conjugation Theory , 1998 .
[81] I. Singer. Abstract Convex Analysis , 1997 .
[82] Vjačeslav V. Sazonov. The infinite dimensional case , 1981 .
[83] Alberto Zaffaroni,et al. Is every radiant function the sum of quasiconvex functions? , 2004, Math. Methods Oper. Res..
[84] Xiaoqi Yang,et al. The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function , 2002, Math. Oper. Res..
[85] Dual problems of quasiconvex maximisation , 1995, Bulletin of the Australian Mathematical Society.
[86] H. Komiya,et al. Convexity on a topological space , 1981 .
[87] Szymon Dolecki,et al. On $\Phi $-Convexity in Extremal Problems , 1978 .
[88] Jean-Paul Penot,et al. Another duality scheme for Quasiconvex Problems , 1988 .
[89] S. Kurcyusz,et al. Some Remarks on Generalized Lagrangians , 1975, Optimization Techniques.
[90] A. M. Rubinov,et al. Quasiconvexity via Two Step Functions , 1998 .
[91] Jean-Paul Penot,et al. Duality for Anticonvex Programs , 2001, J. Glob. Optim..
[92] R. Rockafellar. Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming , 1982 .
[93] F. Facchinei. Exact penalty functions and Lagrange multipliers , 1991 .
[94] Xiaoqi Yang,et al. Progress in Optimization , 2000 .
[95] J. Aubin,et al. Applied Nonlinear Analysis , 1984 .
[96] J. Frédéric Bonnans,et al. Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.
[97] S. Yau. Mathematics and its applications , 2002 .
[98] Duan Li. Zero duality gap for a class of nonconvex optimization problems , 1995 .
[99] F. Plastria. Lower subdifferentiable functions and their minimization by cutting planes , 1985 .
[100] Juan Enrique Martínez-Legaz,et al. Quasiconvex duality theory by generalized conjugation methods , 1988 .
[101] Phan Thien Thach. Quasiconjugates of functions, duality relationship between Quasiconvex Minimization under a Reverse Convex Constraint and Quasiconvex Maximization under a Convex Constraint, and applications☆ , 1991 .
[102] Fabián Flores-Bazán,et al. On a notion of subdifferentiability for non-convex functions † , 1995 .
[103] J. Hiriart-Urruty,et al. Trends in Mathematical Optimization , 1987 .
[104] Juan Enrique Martínez-Legaz,et al. On lower subdifferentiable functions , 1988 .
[105] Marc Teboulle,et al. A Conjugate Duality Scheme Generating a New Class of Differentiable Duals , 1996, SIAM J. Optim..
[106] Kok Lay Teo,et al. Optimization methods and applications , 2001 .
[107] V. F. Demʹi︠a︡nov,et al. Quasidifferentiability and related topics , 2000 .
[108] Erik J. Balder,et al. An Extension of Duality-Stability Relations to Nonconvex Optimization Problems , 1977 .
[109] Francis H. Clarke,et al. Nonconvex Duality in Optimal Control , 2005, SIAM J. Control. Optim..
[110] Stefan Rolewicz. DUALITY AND CONVEX ANALYSIS IN THE ABSENCE OF LINEAR STRUCTURE , 1996 .
[111] A. D. Ioffe. Abstract convexity and non-smooth analysis , 2001 .
[112] G. Kassay,et al. A Systematization of Convexity Concepts for Sets and Functions , 1997 .
[113] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[114] Toru Maruyama,et al. Advances in Mathematical Economics , 1999 .
[115] A. M. Rubinov,et al. Duality for increasing positively homogeneous functions and normal sets , 1998 .
[116] Phan Thien Thach. A Nonconvex Duality with Zero Gap and Applications , 1994, SIAM J. Optim..
[117] Jacob Flachs. Global saddle-point duality for quasi-concave programs , 1981, Math. Program..
[118] Christian Michelot,et al. Recent Developments in Optimization , 1995 .
[119] J. Flachs,et al. Duality theorems for certain programs involving minimum or maximum operations , 1979, Math. Program..
[120] P. Laurent. Approximation et optimisation , 1972 .
[121] M. Sion. On the existence of functions having given partial derivatives on a curve , 1954 .
[122] Phan Thien Thach,et al. Diewert-Crouzeix conjugation for general quasiconvex duality and applications , 1995 .
[123] Michael Malisoff,et al. Optimal Control, Stabilization and Nonsmooth Analysis , 2004 .
[124] Diethard Pallaschke,et al. Foundations of mathematical optimization : convex analysis without linearity , 1997 .
[126] Juan Enrique Martínez-Legaz,et al. Characterizations of evenly convex sets and evenly quasiconvex functions , 2002 .
[127] Xiaoqi Yang,et al. Nonlinear Unconstrained Optimization Methods: A Review , 2000 .
[128] R. Rockafellar. Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .
[129] Arjan van der Schaft,et al. Perspectives in control theory , 1990 .
[130] J. Penot. What is quasiconvex analysis? , 2000 .
[131] Dimitri P. Bertsekas,et al. Constrained Optimization and Lagrange Multiplier Methods , 1982 .
[132] R. Temam,et al. Analyse convexe et problèmes variationnels , 1974 .
[133] Alfred Auslender,et al. Convex Analysis and Its Applications , 1977 .
[134] Dimitri P. Bertsekas,et al. Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..
[135] C. Zălinescu,et al. Elements of quasiconvex subdifferential calculus. , 2000 .