Unilateral Analysis and Duality

We introduce one-sided versions of Lagrangians and perturbations. We relate them, using concepts from generalized convexity. In such a way, we are able to present the main features of duality theory in a general framework encompassing numerous special instances. We focus our attention on the set of multipliers. We look for an interpretation of multipliers as generalized derivatives of the performance function associated with a dualizing parameterization of the given problem.

[1]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[2]  M. Hestenes Optimization Theory: The Finite Dimensional Case , 1975 .

[3]  Semen S. Kutateladze,et al.  MINKOWSKI DUALITY AND ITS APPLICATIONS , 1972 .

[4]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[5]  H. Komiya,et al.  Perfect duality for convexlike programs , 1982 .

[6]  C. Goh,et al.  Nonlinear Lagrangian Theory for Nonconvex Optimization , 2001 .

[7]  Yuri G. Evtushenko,et al.  Exact auxiliary functions , 1990 .

[8]  J. P. Penot DUALITY FOR RADIANT AND SHADY PROGRAMS , 1997 .

[9]  J. Penot,et al.  Lagrangian Approach to Quasiconvex Programing , 2003 .

[10]  J. F. Bonnans Théorie de la pénalisation exacte , 1990 .

[11]  Ivan Singer Some relations between dualities, polarities, coupling functionals, and conjugations , 1986 .

[12]  Thomas L. Magnanti,et al.  Fenchel and Lagrange duality are equivalent , 1974, Math. Program..

[13]  Xiaoqi Yang,et al.  Lagrange-type Functions in Constrained Non-Convex Optimization , 2003 .

[14]  S. Dolecki,et al.  Exact Penalties for Local Minima , 1979 .

[15]  Jean-Paul Penot,et al.  The bearing of duality on microeconomics , 2005 .

[16]  A. Rubinov Abstract Convexity and Global Optimization , 2000 .

[17]  J. Tolle,et al.  Differential Stability in Nonlinear Programming , 1977 .

[18]  A. P. Shveidel,et al.  Seperability of Star-Shaped Sets and its Application to an Optimization Problem , 1997 .

[19]  Michel Volle Conjugaison par tranches , 1985 .

[20]  Diethard Pallaschke,et al.  Foundations of Mathematical Optimization , 1997 .

[21]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[22]  Juan Enrique Martínez-Legaz,et al.  Dualities between complete lattices , 1990 .

[23]  J. Penot,et al.  Multipliers and Generalized Derivatives of Performance Functions , 1997 .

[24]  Ky Pan 5. On Systems of Linear Inequalities , 1957 .

[25]  Juan Enrique Martínez-Legaz,et al.  Subdifferentials with respect to dualities , 1995, Math. Methods Oper. Res..

[26]  W. Oettli,et al.  Augmented Lagrangians for General Side Constraints , 2000 .

[27]  Daniel Ralph,et al.  Applying Generalised Convexity Notions to Jets , 1998 .

[28]  Yair Censor,et al.  Recent Developments in Optimization Theory and Nonlinear Analysis: Ams/Imu Special Session on Optimization and Nonlinear Analysis, May 24-26, 1995, Jerusalem, Israel , 1997 .

[29]  S. Simons Minimax and monotonicity , 1998 .

[30]  A. Frank An Algorithm for Submodular Functions on Graphs , 1982 .

[31]  Werner Oettli,et al.  Conjugate Functions for Convex and Nonconvex Duality , 1998, J. Glob. Optim..

[32]  X. Q. Yang,et al.  Decreasing Functions with Applications to Penalization , 1999, SIAM J. Optim..

[33]  Masami Fujimori On systems of linear inequalities , 2003 .

[34]  Xiaoqi Yang,et al.  Extended Lagrange And Penalty Functions in Continuous Optimization , 1999 .

[35]  Alfred Auslender,et al.  Existence of optimal solutions and duality results under weak conditions , 2000, Math. Program..

[36]  Jean-Paul Penot Rotundity, smoothness and duality , 2003 .

[37]  Pham Huu Sach,et al.  Generalized Monotonicity of Subdifferentials and Generalized Convexity , 1997 .

[38]  Jean-Paul Penot,et al.  Lower Subdifferentiability and Integration , 2002 .

[39]  M. Sion On general minimax theorems , 1958 .

[40]  S. Simons A flexible minimax theorem , 1994 .

[41]  J. Penot Generalized Convexity in the Light of Nonsmooth Analysis , 1995 .

[42]  Separability of Star-Shaped Sets with Respect to Infinity , 2000 .

[43]  Jean-Paul Penot,et al.  Surrogate Programming and Multipliers in Quasi-convex Programming , 2003, SIAM J. Control. Optim..

[44]  Vitali G. Zhadan,et al.  General lagrange-type functions in constrained global optimization part II: Exact auxiliary functions , 2001 .

[45]  Jean-Paul Penot,et al.  Multipliers and general Lagrangians , 2005 .

[46]  B. Simsek,et al.  Conjugate quasiconvex nonnegative functions , 1995 .

[47]  Satoru Fujishige Theory of submodular programs: A fenchel-type min-max theorem and subgradients of submodular functions , 1984, Math. Program..

[48]  Duan Li,et al.  Nonlinear Lagrangian Methods in Constrained Nonlinear Optimization , 2001 .

[49]  A. M. Rubinov Radiant Sets and Their Gauges , 2000 .

[50]  Jean-Pierre Crouzeix La convexité généralisée en économie mathématique , 2003 .

[51]  李幼升,et al.  Ph , 1989 .

[52]  Alexander M. Rubinov,et al.  Downward Sets and their separation and approximation properties , 2002, J. Glob. Optim..

[53]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[54]  G. Foussereau,et al.  Comptes rendus des séances de l'Académie des Sciences et annales de chimie et de physique; 1892 , 1893 .

[55]  Jean-Paul Penot,et al.  On Quasi-Convex Duality , 1990, Math. Oper. Res..

[56]  E. Giner,et al.  Kuhn-Tucker Conditions and Integral Functionals , 2001 .

[57]  A. M. Rubinov,et al.  Increasing Convex-Along-Rays Functions with Applications to Global Optimization , 1999 .

[58]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[59]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[60]  Nonconvex duality-stability relations pertaining to the interior penalty function method , 1980 .

[61]  Xiaoqi Yang,et al.  A Unified Augmented Lagrangian Approach to Duality and Exact Penalization , 2003, Math. Oper. Res..

[62]  A. Cambini,et al.  Generalized convexity and fractional programming with economic applications : proceedings of the International Workshop on "Generalized Concavity, Fractional Programming, and Economic Applications" held at the University of Pisa, Italy, May 30-June 1, 1988 , 1990 .

[63]  Phan Thien Thach Global optimality criterion and a duality with a zero gap in nonconvex optimization , 1993 .

[64]  Alexander Rubinov,et al.  Lipschitz programming via increasing convex-along-rays functions * , 1999 .

[65]  J. Aubin Mathematical methods of game and economic theory , 1979 .

[66]  Andrew Craig Eberhard,et al.  Jets, generalised convexity, proximal normality and differences of functions , 1998 .

[67]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[68]  J. Penot,et al.  Characterization of Solution Sets of Quasiconvex Programs , 2003 .

[69]  X. X. Huang,et al.  A Nonlinear Lagrangian Approach to Constrained Optimization Problems , 2000, SIAM J. Optim..

[70]  A. Rubinov,et al.  The space of star-shaped sets and its applications in nonsmooth optimization , 1986 .

[71]  Jacob Flachs Global saddle-point duality for quasi-concave programs, II , 1982, Math. Program..

[72]  J. Gauvin,et al.  Directional derivative of the value function in parametric optimization , 1991 .

[73]  Laurence A. Wolsey,et al.  An elementary survey of general duality theory in mathematical programming , 1981, Math. Program..

[74]  J. P. Crouzeix Conjugacy in quasiconvex analysis , 1977 .

[75]  F. Giannessi Theorems of the alternative and optimality conditions , 1984 .

[76]  Jean-Paul Penot,et al.  On Strongly Convex and Paraconvex Dualities , 1990 .

[77]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[78]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[79]  Jane J. Ye,et al.  Exact Penalization and Necessary Optimality Conditions for Generalized Bilevel Programming Problems , 1997, SIAM J. Optim..

[80]  Juan Enrique Martínez-Legaz,et al.  Simplified Global Optimality Conditions in Generalized Conjugation Theory , 1998 .

[81]  I. Singer Abstract Convex Analysis , 1997 .

[82]  Vjačeslav V. Sazonov The infinite dimensional case , 1981 .

[83]  Alberto Zaffaroni,et al.  Is every radiant function the sum of quasiconvex functions? , 2004, Math. Methods Oper. Res..

[84]  Xiaoqi Yang,et al.  The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function , 2002, Math. Oper. Res..

[85]  Dual problems of quasiconvex maximisation , 1995, Bulletin of the Australian Mathematical Society.

[86]  H. Komiya,et al.  Convexity on a topological space , 1981 .

[87]  Szymon Dolecki,et al.  On $\Phi $-Convexity in Extremal Problems , 1978 .

[88]  Jean-Paul Penot,et al.  Another duality scheme for Quasiconvex Problems , 1988 .

[89]  S. Kurcyusz,et al.  Some Remarks on Generalized Lagrangians , 1975, Optimization Techniques.

[90]  A. M. Rubinov,et al.  Quasiconvexity via Two Step Functions , 1998 .

[91]  Jean-Paul Penot,et al.  Duality for Anticonvex Programs , 2001, J. Glob. Optim..

[92]  R. Rockafellar Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming , 1982 .

[93]  F. Facchinei Exact penalty functions and Lagrange multipliers , 1991 .

[94]  Xiaoqi Yang,et al.  Progress in Optimization , 2000 .

[95]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[96]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[97]  S. Yau Mathematics and its applications , 2002 .

[98]  Duan Li Zero duality gap for a class of nonconvex optimization problems , 1995 .

[99]  F. Plastria Lower subdifferentiable functions and their minimization by cutting planes , 1985 .

[100]  Juan Enrique Martínez-Legaz,et al.  Quasiconvex duality theory by generalized conjugation methods , 1988 .

[101]  Phan Thien Thach Quasiconjugates of functions, duality relationship between Quasiconvex Minimization under a Reverse Convex Constraint and Quasiconvex Maximization under a Convex Constraint, and applications☆ , 1991 .

[102]  Fabián Flores-Bazán,et al.  On a notion of subdifferentiability for non-convex functions † , 1995 .

[103]  J. Hiriart-Urruty,et al.  Trends in Mathematical Optimization , 1987 .

[104]  Juan Enrique Martínez-Legaz,et al.  On lower subdifferentiable functions , 1988 .

[105]  Marc Teboulle,et al.  A Conjugate Duality Scheme Generating a New Class of Differentiable Duals , 1996, SIAM J. Optim..

[106]  Kok Lay Teo,et al.  Optimization methods and applications , 2001 .

[107]  V. F. Demʹi︠a︡nov,et al.  Quasidifferentiability and related topics , 2000 .

[108]  Erik J. Balder,et al.  An Extension of Duality-Stability Relations to Nonconvex Optimization Problems , 1977 .

[109]  Francis H. Clarke,et al.  Nonconvex Duality in Optimal Control , 2005, SIAM J. Control. Optim..

[110]  Stefan Rolewicz DUALITY AND CONVEX ANALYSIS IN THE ABSENCE OF LINEAR STRUCTURE , 1996 .

[111]  A. D. Ioffe Abstract convexity and non-smooth analysis , 2001 .

[112]  G. Kassay,et al.  A Systematization of Convexity Concepts for Sets and Functions , 1997 .

[113]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[114]  Toru Maruyama,et al.  Advances in Mathematical Economics , 1999 .

[115]  A. M. Rubinov,et al.  Duality for increasing positively homogeneous functions and normal sets , 1998 .

[116]  Phan Thien Thach A Nonconvex Duality with Zero Gap and Applications , 1994, SIAM J. Optim..

[117]  Jacob Flachs Global saddle-point duality for quasi-concave programs , 1981, Math. Program..

[118]  Christian Michelot,et al.  Recent Developments in Optimization , 1995 .

[119]  J. Flachs,et al.  Duality theorems for certain programs involving minimum or maximum operations , 1979, Math. Program..

[120]  P. Laurent Approximation et optimisation , 1972 .

[121]  M. Sion On the existence of functions having given partial derivatives on a curve , 1954 .

[122]  Phan Thien Thach,et al.  Diewert-Crouzeix conjugation for general quasiconvex duality and applications , 1995 .

[123]  Michael Malisoff,et al.  Optimal Control, Stabilization and Nonsmooth Analysis , 2004 .

[124]  Diethard Pallaschke,et al.  Foundations of mathematical optimization : convex analysis without linearity , 1997 .

[126]  Juan Enrique Martínez-Legaz,et al.  Characterizations of evenly convex sets and evenly quasiconvex functions , 2002 .

[127]  Xiaoqi Yang,et al.  Nonlinear Unconstrained Optimization Methods: A Review , 2000 .

[128]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[129]  Arjan van der Schaft,et al.  Perspectives in control theory , 1990 .

[130]  J. Penot What is quasiconvex analysis? , 2000 .

[131]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[132]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[133]  Alfred Auslender,et al.  Convex Analysis and Its Applications , 1977 .

[134]  Dimitri P. Bertsekas,et al.  Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..

[135]  C. Zălinescu,et al.  Elements of quasiconvex subdifferential calculus. , 2000 .