An Extended Joint Consistency Theorem for a Nonconstructive Logic of Partial Terms with Definite Descriptions

The logic of partial terms (LPT) is a variety of negative free logic in which functions, as well as predicates, are strict. A companion paper focused on nonconstructive LPTwith definite descriptions, called LPD, and laid the foundation for tableaux systems by defining the concept of an LPDmodel system and establishing Hintikka's Lemma, from which the strong completeness of the corresponding tableaux system readily follows. The present paper utilizes the tableaux system in establishing an Extended Joint Consistency Theorem for LPDthat incorporates the Robinson Joint Consistency Theorem and the Craig-Lyndon Interpolation Lemma. The method of proof is similar to that originally used in establishing the Extended Joint Consistency Theorem for positive free logic. Proof of the Craig-Lyndon Interpolation Lemma for formulas possibly having free variables is readily had in LPTand its intuitionistic counterpart. The paper concludes with a brief discussion of the theory of definitions in LPD.