Detailed measurement of the phase distribution of an optical beam with inverting vortex

The detailed phase distribution of an astigmatic optical beam with inverting vortex is measured with a polarization based phase shifting interferometry. Energy flows and angular momentum density distribution within the beam cross sections are calculated from experimental data. Positive and negative angular momentum regions are observed both before and after vortex inversion, and regions of pure radial flow are identified.

[1]  P. Siddons Light propagation through atomic vapours , 2014 .

[2]  M. Belić,et al.  Dipole Azimuthons and Vortex Charge Flipping in Nematic Liquid Crystals , 2022 .

[3]  Jan Burke,et al.  Invited review article: measurement uncertainty of linear phase-stepping algorithms. , 2011, The Review of scientific instruments.

[4]  A. Desyatnikov,et al.  All-optical discrete vortex switch , 2011 .

[5]  K. Bliokh,et al.  Internal flows and energy circulation in light beams , 2010, 1011.0862.

[6]  A. Bekshaev,et al.  Optical vortex generation with a “fork” hologram under conditions of high-angle diffraction , 2010 .

[7]  C. Souza,et al.  A Michelson controlled-not gate with a single-lens astigmatic mode converter. , 2010, Optics express.

[8]  M. Padgett,et al.  Methodology for imaging the 3D structure of singularities in scalar and vector optical fields , 2009 .

[9]  A. Khoury,et al.  Transfer of orbital angular momentum in a multimode parametric oscillator. , 2008, Optics letters.

[10]  H. Michinel,et al.  Inversion of a guided optical vortex , 2006 .

[11]  Wei Wang,et al.  Optical vortex metrology for nanometric speckle displacement measurement. , 2006, Optics express.

[12]  M. Takeda,et al.  Propagation analysis of the Laguerre-Gaussian beam with astigmatism. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Mikhail V. Vasnetsov,et al.  Transformation of higher-order optical vortices upon focusing by an astigmatic lens , 2004 .

[14]  M S Soskin,et al.  Optical vortex symmetry breakdown and decomposition of the orbital angular momentum of light beams. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  Andrew G. White,et al.  Frequency locking by analysis of orthogonal modes , 2003 .

[16]  Mikhail V. Vasnetsov,et al.  Transformation of the orbital angular momentum of a beam with optical vortex in an astigmatic optical system , 2002 .

[17]  L. Torner,et al.  Observation of the dynamical inversion of the topological charge of an optical vortex , 2001 .

[18]  Yoko Miyamoto,et al.  Electron-beam lithography fabrication of phase holograms to generate Laguerre-Gaussian beams , 1999, Other Conferences.

[19]  J. P. Woerdman,et al.  Astigmatic laser mode converters and transfer of orbital angular momentum , 1993 .

[20]  H. Rubinsztein-Dunlop,et al.  Laser beams with phase singularities , 1992 .

[21]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  R. Smythe,et al.  Instantaneous Phase Measuring Interferometry , 1983 .

[23]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.

[24]  Paramasivam Senthilkumaran,et al.  Singular Optics , 2012 .

[25]  Mark R. Dennis,et al.  Singular optics: optical vortices and polarization singularities , 2009 .

[26]  M. Vasnetsov,et al.  Laser beams with screw dislocations in their wavefronts , 2003 .

[27]  M. S. Soskin,et al.  Chapter 4 - Singular optics , 2001 .