A Generative Probabilistic Model and Discriminative Extensions for Brain Lesion Segmentation— With Application to Tumor and Stroke

We introduce a generative probabilistic model for segmentation of brain lesions in multi-dimensional images that generalizes the EM segmenter, a common approach for modelling brain images using Gaussian mixtures and a probabilistic tissue atlas that employs expectation-maximization (EM), to estimate the label map for a new image. Our model augments the probabilistic atlas of the healthy tissues with a latent atlas of the lesion. We derive an estimation algorithm with closed-form EM update equations. The method extracts a latent atlas prior distribution and the lesion posterior distributions jointly from the image data. It delineates lesion areas individually in each channel, allowing for differences in lesion appearance across modalities, an important feature of many brain tumor imaging sequences. We also propose discriminative model extensions to map the output of the generative model to arbitrary labels with semantic and biological meaning, such as “tumor core” or “fluid-filled structure”, but without a one-to-one correspondence to the hypo- or hyper-intense lesion areas identified by the generative model. We test the approach in two image sets: the publicly available BRATS set of glioma patient scans, and multimodal brain images of patients with acute and subacute ischemic stroke. We find the generative model that has been designed for tumor lesions to generalize well to stroke images, and the extended discriminative -discriminative model to be one of the top ranking methods in the BRATS evaluation.

[1]  Ben Taskar,et al.  Generative-Discriminative Basis Learning for Medical Imaging , 2012, IEEE Transactions on Medical Imaging.

[2]  W. Eric L. Grimson,et al.  Coupling Statistical Segmentation and PCA Shape Modeling , 2004, MICCAI.

[3]  Christos Davatzikos,et al.  Deformable Registration of Glioma Images Using EM Algorithm and Diffusion Reaction Modeling , 2011, IEEE Transactions on Medical Imaging.

[4]  Mark W. Schmidt,et al.  3D Variational Brain Tumor Segmentation using a High Dimensional Feature Set , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[5]  Stefan Bauer,et al.  Multiscale Modeling for Image Analysis of Brain Tumor Studies , 2012, IEEE Transactions on Biomedical Engineering.

[6]  Fred A. Hamprecht,et al.  Multi-modal Brain Tumor Segmentation using Deep Convolutional Neural Networks , 2014 .

[7]  Guido Gerig,et al.  A brain tumor segmentation framework based on outlier detection , 2004, Medical Image Anal..

[8]  Alan L. Yuille,et al.  Efficient Multilevel Brain Tumor Segmentation With Integrated Bayesian Model Classification , 2008, IEEE Transactions on Medical Imaging.

[9]  Chi-Hoon Lee,et al.  Segmenting Brain Tumors Using Pseudo-Conditional Random Fields , 2008, MICCAI.

[10]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[11]  N. Ayache,et al.  Segmenting Glioma in Multi-Modal Images using a Generative-Discriminative Model for Brain Lesion Segmentation , 2012 .

[12]  Antti Honkela,et al.  A Generative Approach for Image-Based Modeling of Tumor Growth , 2011, IPMI.

[13]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[14]  A. Toga,et al.  Comparison of acute and chronic traumatic brain injury using semi-automatic multimodal segmentation of MR volumes. , 2011, Journal of neurotrauma.

[15]  Ben Glocker,et al.  Is Synthesizing MRI Contrast Useful for Inter-modality Analysis? , 2013, MICCAI.

[16]  Christos Davatzikos,et al.  GLISTR: Glioma Image Segmentation and Registration , 2012, IEEE Transactions on Medical Imaging.

[17]  Ron Kikinis,et al.  Segmentation of Meningiomas and Low Grade Gliomas in MRI , 1999, MICCAI.

[18]  Antonio Criminisi,et al.  A Discriminative-Generative Model for Detecting Intravenous Contrast in CT Images , 2011, MICCAI.

[19]  Nicholas Ayache,et al.  Monitoring slowly evolving tumors , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[20]  T. Farr,et al.  Use of Magnetic Resonance Imaging to Predict Outcome after Stroke: A Review of Experimental and Clinical Evidence , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[21]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[22]  Stefan Bauer,et al.  Integrated Spatio-Temporal Segmentation of Longitudinal Brain Tumor Imaging Studies , 2013, MCV.

[23]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[24]  Ullrich Köthe,et al.  On Oblique Random Forests , 2011, ECML/PKDD.

[25]  R. Kikinis,et al.  A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury , 2012, Brain Imaging and Behavior.

[26]  Nicholas Ayache,et al.  A Generative Model for Brain Tumor Segmentation in Multi-Modal Images , 2010, MICCAI.

[27]  Koenraad Van Leemput,et al.  Segmentation of image ensembles via latent atlases , 2010, Medical Image Anal..

[28]  Bjoern H Menze,et al.  Joint segmentation via patient-specific latent anatomy model , 2009 .

[29]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[30]  Dinggang Shen,et al.  ORBIT: A Multiresolution Framework for Deformable Registration of Brain Tumor Images , 2008, IEEE Transactions on Medical Imaging.

[31]  Claudio Pollo,et al.  Atlas-based segmentation of pathological MR brain images using a model of lesion growth , 2004, IEEE Transactions on Medical Imaging.

[32]  Gustavo Carneiro,et al.  A Discriminative Model-Constrained Graph Cuts Approach to Fully Automated Pediatric Brain Tumor Segmentation in 3-D MRI , 2008, MICCAI.

[33]  Brian B. Avants,et al.  Optimal Symmetric Multimodal Templates and Concatenated Random Forests for Supervised Brain Tumor Segmentation (Simplified) with ANTsR , 2014, Neuroinformatics.

[34]  S. Bauer,et al.  A survey of MRI-based medical image analysis for brain tumor studies , 2013, Physics in medicine and biology.

[35]  Yi-Fen Tsai,et al.  Automatic MRI Meningioma Segmentation Using Estimation Maximization , 2005, 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference.

[36]  W. Eric L. Grimson,et al.  A Unifying Approach to Registration, Segmentation, and Intensity Correction , 2005, MICCAI.

[37]  Nikos Paragios,et al.  Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images , 2012, MICCAI.

[38]  Koen Van Leemput,et al.  Encoding Probabilistic Brain Atlases Using Bayesian Inference , 2009, IEEE Transactions on Medical Imaging.

[39]  Guillaume Charpiat,et al.  Spatio-Temporal Video Segmentation With Shape Growth or Shrinkage Constraint , 2014, IEEE Transactions on Image Processing.

[40]  Zhuowen Tu,et al.  Robust Skull Stripping of Clinical Glioblastoma Multiforme Data , 2011, MICCAI.

[41]  Claudio Pollo,et al.  Atlas-based segmentation of pathological brain MR images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[42]  Hervé Delingette,et al.  Image Guided Personalization of Reaction-Diffusion Type Tumor Growth Models Using Modified Anisotropic Eikonal Equations , 2010, IEEE Transactions on Medical Imaging.

[43]  J. Ashburner,et al.  Multimodal Image Coregistration and Partitioning—A Unified Framework , 1997, NeuroImage.

[44]  William M. Wells,et al.  Atlas-Based Improved Prediction of Magnetic Field Inhomogeneity for Distortion Correction of EPI Data , 2009, MICCAI.

[45]  B. Ginneken,et al.  3D Segmentation in the Clinic: A Grand Challenge , 2007 .

[46]  Paul M. Thompson,et al.  Robust Brain Extraction Across Datasets and Comparison With Publicly Available Methods , 2011, IEEE Transactions on Medical Imaging.

[47]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[48]  Marc-André Weber,et al.  Semi-supervised Tumor Detection in Magnetic Resonance Spectroscopic Images Using Discriminative Random Fields , 2007, DAGM-Symposium.

[49]  Guido Gerig,et al.  Automatic brain tumor segmentation by subject specific modification of atlas priors. , 2003, Academic radiology.

[50]  Ross T. Whitaker,et al.  Interactive, GPU-Based Level Sets for 3D Brain Tumor Segmentation , 2003 .

[51]  Peter A. Calabresi,et al.  Longitudinal intensity normalization in the presence of multiple sclerosis lesions , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[52]  R. Kikinis,et al.  Recognizing Deviations from Normalcy for Brain Tumor Segmentation , 2002, MICCAI.

[53]  S. Allassonnière,et al.  Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal , 2012, NeuroImage: Clinical.

[54]  Nicholas Ayache,et al.  Image-based modeling of tumor growth in patients with glioma. , 2011 .

[55]  D. Lashkari,et al.  Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation , 2012 .

[56]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[57]  Snehashis Roy,et al.  A Compressed Sensing Approach for MR Tissue Contrast Synthesis , 2011, IPMI.

[58]  Guido Gerig,et al.  Model-based brain and tumor segmentation , 2002, Object recognition supported by user interaction for service robots.

[59]  William M. Wells,et al.  Feature-Based Alignment of Volumetric Multi-modal Images , 2013, IPMI.

[60]  Wei Wu,et al.  Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features , 2013, International Journal of Computer Assisted Radiology and Surgery.

[61]  Nicholas Ayache,et al.  Sparse Scale-Space Decomposition of Volume Changes in Deformations Fields , 2013, MICCAI.

[62]  Guillaume Charpiat,et al.  Enforcing Monotonous Shape Growth or Shrinkage in Video Segmentation , 2013, BMVC.

[63]  Nicholas Ayache,et al.  Spatially Adaptive Random Forests , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[64]  Olivier Clatz,et al.  Spatial decision forests for MS lesion segmentation in multi-channel magnetic resonance images , 2011, NeuroImage.

[65]  Marc-André Weber,et al.  Mimicking the human expert: Pattern recognition for an automated assessment of data quality in MR spectroscopic images , 2008, Magnetic resonance in medicine.

[66]  L. Breiman CONSISTENCY FOR A SIMPLE MODEL OF RANDOM FORESTS , 2004 .

[67]  Mert R. Sabuncu,et al.  Improved inference in Bayesian segmentation using Monte Carlo sampling: Application to hippocampal subfield volumetry , 2013, Medical Image Anal..

[68]  Koenraad Van Leemput,et al.  Automated segmentation of multiple sclerosis lesions by model outlier detection , 2001, IEEE Transactions on Medical Imaging.

[69]  Paul M. Thompson,et al.  Brain Anatomical Structure Segmentation by Hybrid Discriminative/Generative Models , 2008, IEEE Transactions on Medical Imaging.

[70]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[71]  Ben Glocker,et al.  Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR , 2012, MICCAI.

[72]  Olivier Clatz,et al.  Glioma Dynamics and Computational Models: A Review of Segmentation, Registration, and In Silico Growth Algorithms and their Clinical Applications , 2007 .